精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正三角形所在平面与梯形所在平面垂直, 为棱的中点.

(1)求证: 平面

(2)若直线与平面所成的角为30°,求三棱锥的体积.

【答案】(1)见解析;(2) .

【解析】试题分析:(1)先根据面面垂直性质定理转化为线面垂直平面,,再利用线面垂直性质定理得线线垂直,由正三角形性质得,最后根据线面垂直判定定理得结论,(2)先根据线面垂直平面确定直线与平面所成的角的平面角为,求出到平面的距离,根据的中点,可得点到平面的距离为点到平面的距离一半,利用锥体体积公式可得,再根据等体积法可得.

试题解析:(1)∵平面平面,平面平面

平面

平面

又∵为正三角形, 的中点,

又∵平面

平面

(2)取中点,连接

易知平面,∴与平面所成的角为

中, ,∴

为正三角形, 的中点,

∵平面平面,∴平面

又∵的中点,∴点到平面的距离为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在公差为d的等差数列{an}中,已知a1=10,5a1a3=(2a2+2)2
(1)求d和an的值;
(2)若d<0,求|a1|+|a2|+|a3|+…+|a2021|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程是,则经过圆上一点的切线方程( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, 是自然对数的底数).

1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin cos +sin2 (ω>0,0<φ< ).其图象的两个相邻对称中心的距离为 ,且过点( ,1).
(1)函数f(x)的解析式;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c.已知 = .且f(A)= ,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足,若目标函数的最大值为6,则的最小值为( )

A. B. C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了解学生在课外读物方面的支出情况,抽取了n名同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为(  )

A. 100 B. 120 C. 130 D. 390

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)在区间[1,3]上任取两整数a、b,求二次方程x2+2ax+b2=0有实数根的概率.
(2)在区间[1,3]上任取两实数a、b,求二次方程x2+2ax+b2=0有实数根的概率.

查看答案和解析>>

同步练习册答案