分析 当焦点在x轴上时,设椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2b=6}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可得出;当焦点在y轴上时,同理可得椭圆的标准方程.
解答 解:当焦点在x轴上时,设椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2b=6}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=6,b=3,
可得椭圆的标准方程为$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{9}$=1.
当焦点在y轴上时,同理可得椭圆的标准方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{36}$=1.
点评 本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,-5),(0,5) | B. | (0,-7),(0,7) | C. | (-2$\sqrt{6}$,0),(2$\sqrt{6}$,0) | D. | (0,-2$\sqrt{6}$),(0,2$\sqrt{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com