(本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。
已知数列的前项和为,且,
(1)证明:是等比数列;
(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。
(2)= n=15取得最小值
科目:高中数学 来源: 题型:
(本大题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径取何值时,取得最大值?并求出该
最大值(结果精确到0.01平方米);
(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线与所在异面直线所成角的大小(结果用反三角函数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
(本大题满分13分)本题共有2个小题,第1小题满分5分,第2小题满分8分.
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径取何值时,取得最大值?并求出该
最大值(结果精确到0.01平方米);
(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线与所在异面直线所成角的大小(结果用反三角函数表示)
查看答案和解析>>
科目:高中数学 来源:2011届福建厦门双十中学高三考前热身理数试卷 题型:解答题
(本小题满分13分)
已知数列满足,数列满足,数列
满足.
(Ⅰ)求数列的通项公式;
(Ⅱ),,试比较与的大小,并证明;
(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建厦门双十中学高三考前热身理数试卷 题型:解答题
(本小题满分13分)
已知数列满足,数列满足,数列
满足.
(Ⅰ)求数列的通项公式;
(Ⅱ),,试比较与的大小,并证明;
(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分13分)
已知数列满足,数列满足,数列
满足.
(Ⅰ)求数列的通项公式;
(Ⅱ),,试比较与的大小,并证明;
(Ⅲ)我们知道数列如果是等差数列,则公差是一个常数,显然在本题的数列中,不是一个常数,但是否会小于等于一个常数呢,若会,请求出的范围,若不会,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com