精英家教网 > 高中数学 > 题目详情

【题目】下图是把二进制的数111112化成十进制数的﹣个程序框图,则判断框内应填入的条件是(
A.i≤4
B.i≤5
C.i>4
D.i>5

【答案】A
【解析】解:由题意输出的S=1+1×2+1×22+1×23+1×24 , 按照程序运行:S=1,i=1;
S=1+1×2,i=2;S=1+1×2+1×22 , i=3;
S=1+1×2+1×22+1×23 , i=4;
S=1+1×2+1×22+1×23+1×24 , i=5,此时跳出循环输出结果,
故判断框内的条件应为i≤4.
故选A.
【考点精析】根据题目的已知条件,利用算法的循环结构的相关知识可以得到问题的答案,需要掌握在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,如果a,b,c成等差数列,B=60°,△ABC的面积为3 ,那么b等于(
A.2
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P与双曲线 =1的两个焦点F1 , F2所连线段的和为6
(1)求动点P的轨迹方程;
(2)若 =0,求点P的坐标;
(3)求角∠F1PF2余弦值的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为正项数列{an}的前n项和,a1=2,Sn+1(Sn+1﹣2Sn+1)=3Sn(Sn+1),则a100等于(
A.2×398
B.4×398
C.2×399
D.4×399

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,PA⊥平面ABC,AB=BC=AC=2,PA= ,E,F分别是PB,BC的中点,则EF与平面PAB所成的角等于(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学校进行了如下的随机调查:向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口的时候你是否闯过红灯?要求被调查者背对调查人抛掷一枚硬币,如果出现正面,就回答第(1)个问题;否则就回答第(2)个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需要回答“是”或“不是”,因为只有被调查本人知道回答了哪个问题,所以都如实做了回答.如果被调查的600人(学号从1到600)中有180人回答了“是”,由此可以估计在这600人中闯过红灯的人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax3+bx2+cx+d的图象如图,则函数y=ax2+ bx+ 的单调递增区间是(

A.(﹣∞,2]
B. ,+∞)
C.[﹣2,3]
D. ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}中,已知a1=1,a4=8,若a3 , a5分别为等差数列{bn}的第4项和第16项.
(1)求数列{an}﹑{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC= 点P在线段A1B上,且cos∠PAO= ,则直线AP与平面A1AC所成角的正弦值为

查看答案和解析>>

同步练习册答案