【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b= ,a+c=ac,求△ABC的面积.
【答案】解:(Ⅰ)由正弦定理和bsinA=asin2B得sinBsinA=sinAsin2B, 所以sinBsinA=2sinAsinBcosB,
所以cosB= .
又B是三角形内角,
所以B= ;
(Ⅱ)∵B= ,
∴b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac,
又b= ,a+c=ac,
∴(ac)2﹣3ac=10,(ac﹣5)(ac+2)=0,
∴ac=5或ac=﹣2(舍去)
∴S△ABC= acsinB=
【解析】(Ⅰ)由正弦定理和二倍角的正弦函数公式化简已知等式可得sinBsinA=2sinAsinBcosB,进而可求cosB= ,结合B是三角形内角,可求B的值.(Ⅱ)由已知利用余弦定理可求b2=(a+c)2﹣3ac,又b= ,a+c=ac,即可解得ac的值,进而利用三角形面积公式即可计算得解.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】给定椭圆C: =1(a>b>0).设t>0,过点T(0,t)斜率为k的 直线l与椭圆C交于M,N两点,O为坐标原点.
(Ⅰ)用a,b,k,t表示△OMN的面积S,并说明k,t应满足的条件;
(Ⅱ)当k变化时,求S的最大值g(t).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=8x的准线与双曲线 ﹣ =1(a>0,b>0)相交于A、B两点,双曲线的一条渐近线方程是y= x,点F是抛物线的焦点,且△FAB是等边三角形,则该双曲线的标准方程是( )
A. ﹣ =1
B. ﹣ =1
C. ﹣ =1
D. ﹣ =1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国“一带一路”战略构思提出后, 某科技企业为抓住“一带一路”带来的机遇, 决定开发生产一款大型电子设备, 生产这种设备的年固定成本为万元, 每生产台,需另投入成本(万元), 当年产量不足台时, (万元); 当年产量不小于台时 (万元), 若每台设备售价为万元, 通过市场分析,该企业生产的电子设备能全部售完.
(1)求年利润 (万元)关于年产量(台)的函数关系式;
(2)年产量为多少台时 ,该企业在这一电子设备的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人约定在下午 4:30:5:00 间在某地相见,且他们在 4:30:5:00 之间 到达的时刻是等可能的,约好当其中一人先到后一定要等另一人 20 分钟,若另一人仍不到则可以离去,则这两人能相见的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.
(1)求角B的大小;
(2)若△ABC的面积为,求sinA+sinC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com