【题目】已知, .
(Ⅰ)若是的必要条件,求实数的取值范围;
(Ⅱ)若,“或”为真命题,“且”为假命题,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点P(3,0)在圆C:(x﹣m)2+(y﹣2)2=40内,动直线过点P且交圆C于A、B两点,若△ABC的面积的最大值是20,则实数m的取值范围是( )
A.(﹣3,﹣1]∪[7,9)
B.[﹣3,﹣1]∪[7,9)
C.[7,9)
D.(﹣3,﹣1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为万元,当年产量不足80千件时, (万元);当年产量不少于80千件时, (万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.
(1)写出年利润 (万元)关于年产量 (千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在公比为正数的等比数列{an}中, , ,数列{bn}(bn>0)的前n项和为Sn满足 (n≥2),且S10=100.
( I)求数列{an}和数列{bn}的通项公式;
( II)求数列{anbn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
在平面直角坐标系xoy中,曲线,直线过点与曲线交于二点, 为中点.以坐标原点O为极点,x轴正半轴为极轴,以平面直角坐标系xoy的单位1为基本单位建立极坐标系.
(1)求直线的极坐标方程;
(2) 为曲线上的动点,求的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,| |=| |=| |=1, ,A(1,1),则 的取值范围( )
A.[﹣1﹣ , ﹣1]
B.[﹣ ﹣ ,﹣ + ]?
C.[ ﹣ , + ]
D.[1﹣ ,1+ ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数的解析式为f(x)= ﹣ (a∈R).
(1)求出f(x)在[0,1]上的解析式;
(2)求f(x)在[﹣1,0]上的最大值.
(3)对任意的x1 , x2∈[﹣1,1]都有|f(x1)﹣f(x2)|≤M成立,求最小的整数M的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com