【题目】【2017年第二次全国大联考江苏卷】若无穷数列满足:恒等于常数,则称具有局部等差数列.
(1)若具有局部等差数列,且,求;
(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,,判断是否具有局部等差数列,并说明理由;
(3)设既具有局部等差数列,又具有局部等差数列,求证:具有局部等差数列.
科目:高中数学 来源: 题型:
【题目】建造一间地面面积为12m2的背面靠墙的猪圈,底面为长方形的猪圈正面的造价为120元/m2 , 侧面的造价为80元/m2 , 屋顶造价为1120元.如果墙高3m,且不计猪圈背面的费用,问怎样设计能使猪圈的总造价最低,最低总造价是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 则异面直线BA1与AC1所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某通讯公司需要在三角形地带OAC区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB内.分界线OB固定,且OB=(1+ )百米,边界线AC始终过点B,边界线OA、OC满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x(3≤x≤6)百米,OC=y百米.
(1)试将y表示成x的函数,并求出函数y的解析式;
(2)当x取何值时?整个中转站的占地面积S△OAC最小,并求出其面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+Dx+Ey+3=0,圆C关于直线x+y﹣1=0对称,圆心在第二象限,半径为 .
(1)求圆C的方程;
(2)已知不过原点的直线l与圆C相切,且与x轴、y轴上的截距相等,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点C(t, )(t∈R,t≠0)为圆心的圆过原点O.
(1)设直线3x+y﹣4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(2)在(1)的条件下,设B(0,2),且P、Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|﹣|PB|的最大值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【南通市、泰州市2017届高三第一次调研测试】(本题满分16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪。已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪。
(1)当时,试判断四边形MNPE的形状,并求其面积;
(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017南通一模】(本题满分16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪。已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪。
(1)当时,试判断四边形MNPE的形状,并求其面积;
(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 【2017江西4月质检】如图,四棱锥中,侧面底面, , , , , ,点在棱上,且,点在棱上,且平面.
(1)求证: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com