精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中是实数)

(1)求的单调区间;

(2)若设,且有两个极值点,,求取值范围.(其中为自然对数的底数)

【答案】(1)单调递增区间为,无单调递减区间;(2).

【解析】试题分析:(1)求导,利用导数研究函数的单调性,分类讨论,求出其单调区间;

(2) 由(1)得函数 由两个极值点,则,且,又

可得

上单调递减,故从而求出的取值范围

试题解析:

解:(1) 的定义域为,,

,,对称轴,,

(i)当,即时, ,

于是,函数的单调递增区间为,无单调递减区间.

(ii) 当,即时,方程 有两个不等实根,

①若,, 恒成立,,函数的单调递增区间为,无单调递减区间.

②若,方程 有两个不等实根,

时, ,故函数

上单调递增,在上单调递减

综上,当时, ,函数的单调递增区间为,无单调递减区间.

时,函数上单调递增,在上单调递减

(2)由(1)得函数 由两个极值点,则,且,又

于是,

恒成立,故

上单调递减,

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线经过点A (1,0).

(1)若直线与圆C相切,求直线的方程;

(2)若直线与圆C相交于PQ两点,求三角形CPQ面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面均为正方形,,点是棱的中点.请建立适当的坐标系,求解下列问题:

(Ⅰ)求证:异面直线互相垂直;

(Ⅱ)求二面角(钝角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且N*

1求数列的通项公式;

2已知N*,记,是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由.

3若数列,对于任意的正整数,均有

成立,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时抛掷甲、乙两颗骰子.

(1)求事件A“甲的点数大于乙的点数”的概率;

(2)若以抛掷甲、乙两颗骰子点数m,n作为点P的坐标(m,n),求事件B“P落在圆内”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD 中,AB∥CD AB⊥ADCD=2AB,平面PAD⊥底面ABCDPA⊥ADEF分别为CDPC的中点.求证:

1BE∥平面PAD

2)平面BEF⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线上任意一点M满足, 其中F (-F (抛物线的焦点是直线yx-1与x轴的交点, 顶点为原点O.

(I)求 的标准方程;

(II)请问是否存在直线l满足条件:① 过的焦点;② 与交于不同两点 且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校收集该校学生从家到学校的时间后,制作成如下的频率分布直方图:

(1)求的值及该校学生从家到校的平均时间;

(2)若该校因学生寝室不足,只能容纳全校的学生住校,出于安全角度考虑,从家到校时间较长的学生才住校,请问从家到校时间多少分钟以上开始住校.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a=(12),b=(-2,n),ab的夹角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐标.

查看答案和解析>>

同步练习册答案