10£®Ä³²úÆ·Éú²ú³§¼Ò¸ù¾ÝÒÔÍùµÄÉú²úÏúÊÛ¾­ÑéµÃµ½ÏÂÃæÓйØÉú²úÏúÊÛµÄͳ¼Æ¹æÂÉ£ºÃ¿Éú²ú²úÆ·x£¨°Ų̀£©£¬Æä×ܳɱ¾ÎªG£¨x£©£¨ÍòÔª£©£¬ÆäÖй̶¨³É±¾Îª2.8ÍòÔª£¬²¢ÇÒÿÉú²ú1°Ų̀µÄÉú²ú³É±¾Îª1ÍòÔª£¨×ܳɱ¾=¹Ì¶¨³É±¾+Éú²ú³É±¾£©£®ÏúÊÛÊÕÈëR£¨x£©£¨ÍòÔª£©Âú×ãR£¨x£©=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x£¨0¡Üx¡Ü5£©}\\{0.05x+11£¨x£¾5£©}\end{array}\right.$£¬¼Ù¶¨¸Ã²úÆ·²úÏúƽºâ£¨¼´Éú²úµÄ²úÆ·¶¼ÄÜÂôµô£©£¬¸ù¾ÝÉÏÊöͳ¼Æ¹æÂÉ£¬ÇëÍê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©Ð´³öÀûÈóº¯Êýy=f£¨x£©µÄ½âÎöʽ£¨ÀûÈó=ÏúÊÛÊÕÈë-×ܳɱ¾£©£»
£¨2£©¹¤³§Éú²ú¶àÉŲ̀²úƷʱ£¬¿ÉʹӯÀû×î¶à£¿

·ÖÎö £¨1£©ÓÉÌâÒâµÃG£¨x£©=2.8+x£¬ÓÉR£¨x£©=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x£¬0¡Üx¡Ü5}\\{0.05x+11£¬x£¾5}\end{array}\right.$£¬f£¨x£©=R£¨x£©-G£¨x£©£¬ÄÜд³öÀûÈóº¯Êýy=f£¨x£©µÄ½âÎöʽ£»
£¨2£©µ±x£¾5ʱ£¬Óɺ¯Êýf£¨x£©µÝ¼õ£¬Öªf£¨x£©£¼f£¨5£©=3.45£¨ÍòÔª£©£®µ±0¡Üx¡Ü5ʱ£¬º¯Êýf£¨x£©=-0.4£¨x-4£©2+3.6£¬µ±x=4ʱ£¬f£¨x£©ÓÐ×î´óֵΪ3.6£¨ÍòÔª£©£®ÓÉ´ËÄÜÇó³ö¹¤³§Éú²ú¶àÉŲ̀²úƷʱ£¬¿ÉʹӯÀû×î¶à£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃG£¨x£©=2.8+x£¬
¡ßR£¨x£©=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x£¬0¡Üx¡Ü5}\\{0.05x+11£¬x£¾5}\end{array}\right.$£¬
¡àf£¨x£©=R£¨x£©-G£¨x£©=$\left\{\begin{array}{l}{-0.4{x}^{2}+3.2x-2.8£¬0¡Üx¡Ü5}\\{8.2-0.95x£¬x£¾5}\end{array}\right.$£®
£¨2£©µ±x£¾5ʱ£¬¡ßº¯Êýf£¨x£©µÝ¼õ£¬¡àf£¨x£©£¼f£¨5£©=3.45£¨ÍòÔª£©£®
µ±0¡Üx¡Ü5ʱ£¬º¯Êýf£¨x£©=-0.4£¨x-4£©2+3.6£¬
ËùÒÔµ±x=4ʱ£¬f£¨x£©ÓÐ×î´óֵΪ3.6£¨ÍòÔª£©£®  
ËùÒÔµ±¹¤³§Éú²ú4°Ų̀²úƷʱ£¬¿ÉʹӮÀû×î´ó£¬ÇÒ×î´óֵΪ3.6ÍòÔª£®

µãÆÀ ±¾Ìâ×ۺϿ¼²éÁË×ܳɱ¾=¹Ì¶¨³É±¾+Éú²ú³É±¾¡¢ÀûÈó=ÏúÊÛÊÕÈë-×ܳɱ¾¡¢·Ö¶Îº¯ÊýµÄÐÔÖÊ¡¢¶þ´Îº¯ÊýÓëÒ»´Îº¯ÊýµÄµ¥µ÷ÐԵȻù´¡ÖªÊ¶Óë»ù±¾·½·¨£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¼¯ºÏ$A=\left\{{x\left|{\frac{{{x^2}-x-6}}{x+1}¡Ü0}\right.}\right\}$£¬¼¯ºÏB={x||x+2a|¡Üa+1£¬a¡ÊR}£®
£¨1£©Ç󼯺ÏAÓ뼯ºÏB£»
£¨2£©ÈôA¡ÉB=B£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈçͼËùʾ£¬A£¬B£¬CÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÉϵÄÈý¸öµã£¬AB¾­¹ýÔ­µãO£¬AC¾­¹ýÓÒ½¹µãF£¬ÈôBF¡ÍACÇÒ|BF|=|CF|£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊÊÇ$\frac{{\sqrt{10}}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªµãPΪԲC£ºx2+y2-4x-4y+4=0ÉϵĶ¯µã£¬µãPµ½Ä³Ö±ÏßlµÄ×î´ó¾àÀëΪ5£¬ÈôÔÚÖ±ÏßlÉÏÈÎÈ¡Ò»µãA×÷Ô²CµÄÇÐÏßAB£¬ÇеãΪB£¬ÔòABµÄ×îСֵÊÇ$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{2}sin£¨x+¦Õ£©£¬0£¼¦Õ£¼\frac{¦Ð}{2}$£¬ÇÒf£¨0£©=1£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÒÑÖª$f£¨¦Á-\frac{¦Ð}{4}£©+f£¨¦Á+\frac{¦Ð}{4}£©=\frac{{4\sqrt{2}}}{5}$£¬ÇÒ$\frac{3¦Ð}{2}$£¼¦Á£¼2¦Ð£¬Çósin¦Á-cos¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®É輯ºÏM={x|0¡Üx¡Ü2}£¬N={y|0¡Üy¡Ü2}£¬ÄÇôÏÂÃæµÄ4¸öͼÐÎÖУ¬Äܱíʾ¼¯ºÏMµ½¼¯ºÏNµÄº¯Êý¹ØϵµÄÓУ¨¡¡¡¡£©
A£®¢Ù¢Ú¢Û¢ÜB£®¢Ù¢Ú¢ÛC£®¢Ú¢ÛD£®¢Ú

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªº¯Êý$f£¨x£©=£¨{m^2}-m-1£©{x^{{m^2}-2m-3}}$ÊÇÃݺ¯Êý£¬ÇÒf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬${£¨a+1£©^{\frac{1}{m}}}£¼{£¨3-2a£©^{\frac{1}{m}}}$£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª[-1£¬$\frac{2}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÔ²CµÄ·½³ÌΪ£¨x-1£©2+£¨y-2£©2=9£¬¹ýµãP£¨-2£¬4£©×÷Ô²CµÄÇÐÏßPA¡¢PB£¬A¡¢BΪÇе㣮
£¨1£©ÇóÇÐÏßPA¡¢PBµÄ·½³Ì£»
£¨2£©Çó¡÷PABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a3=$\frac{3}{2}$£¬S3=$\frac{9}{2}$£®
£¨¢ñ£©Çó{an}µÄͨÏʽ£»
£¨¢ò£©¼Çbn=log2$\frac{6}{{a}_{2n+1}}$£¬ÇÒ{bn}ΪµÝÔöÊýÁУ¬ÈôCn=$\frac{1}{{{b}_{n}b}_{n+1}}$£¬ÇóÖ¤£ºC1+C2+C3+¡­Cn£¼$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸