精英家教网 > 高中数学 > 题目详情
18.求与两直线x-2y+1=0和2x-4y-5=0等距离的点的轨迹方程.

分析 若直线m到l1和l2的距离相等,则m与l1和l2一定平行,代入两平行线之间距离公式,构造方程可求出m的方程.

解答 解:直线l1:x-2y+1=0的方程可化为:2x-4y+2=0,
若直线m到l1和l2的距离相等,则m与l1和l2一定平行
设m的方程为2x-4y+c=0
∴|c+5|=|c-2|
解得c=-1.5,
即m的方程为2x-4y-1.5=0
故与l1和l2等距离的直线的方程为2x-4y-1.5=0.

点评 本题考查的知识点是两条平行线间的距离,熟练掌握平行线间的距离公式是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在一次抗雪救灾中,需要在A、B两地之间架设高压电线,为测量A、B两地的距离,救援人员在相距l米的C、D两地(A,B,C,D在同一平面上),测得∠ACD=45°,∠BCD=30°∠ADC=75°(如图),考虑到电线在自然下垂和施工损耗等原因,实际所得电线长度大于应是A、B距离的1.2倍,问救援至少英爱准备多长的电线?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|y=x-1},B={y|y=x2-1},则A∩B=(  )
A.B.{(0,-1),(1,0)}C.[-1,+∞)D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A={0,1},B={-1,0,1},则从B到A的不同映射的有(  )
A.8个B.9个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2=36和点P(m,2).
(1)当m=6时,过P作圆C的切线,求切线方程和切点坐标;
(2)当m∈[-2,2]时,若过P的直线与圆C交于A,B,弦长AB的最小值记为I(m),求I(m)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)的最小正周期为T,则函数y=f(2x)的最小正周期是$\frac{T}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的值域:
(1)y=$\sqrt{{x}^{2}+5}$;(2)y=x2-4x+6,1≤x<5;
(3)y=-x4+x2$+\frac{1}{4}$,x∈R;(4)y=2x-$\sqrt{x-1}$;(5)y=$\frac{2x+1}{3x+5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x→0时(1+ax2)${\;}^{\frac{1}{3}}$-1与cosx-1是等价无穷小,则a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:
x23456
y2.23.85.56.57.0
(1)请在给出的坐标系中画出上表数据的散点图;
(2)请根据散点图,判断y与x之间是否有较强线性相关性,若有求线性回归直线方程$\stackrel{∧}{y}=\stackrel{∧}{b}x+\stackrel{∧}{a}$;
(3)估计使用年限为10年时,维修费用为多少?
(参考数值:$\sum_{i=1}^{5}{x}_{i}{y}_{i}=112.3$ $\sum_{i=1}^{5}{{x}_{i}}^{2}=80$)
(参考公式:$\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;$\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}$;)

查看答案和解析>>

同步练习册答案