精英家教网 > 高中数学 > 题目详情

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:),经统计,其高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.

试验区

试验区

合计

优质树苗

20

非优质树苗

60

合计

1)求图中的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表);

2)已知所抽取的这120棵树苗来自于两个试验区,部分数据如上列联表:将列联表补充完整,并判断是否有的把握认为优质树苗与两个试验区有关系,并说明理由.

参考数据:

0.15

010

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

【答案】1,中位数26,平均数25.52)列表见详解,没有的把握认为优质树苗与AB两个试验区有关系,理由见详解.

【解析】

由频率和为1,列方程求出a的值,再利用图形求数据的中位数,平均数;

计算优质树苗数,填写列联表,计算观测值,对照临界值得出结论.

由频率分布直方图知,,解得

由频率分布直方图知,中位数为

计算

估计这批树苗的平均高度为

优质树苗有,根据题意填写列联表,

A试验区

B试验区

合计

优质树苗

10

20

30

非优质树苗

60

30

90

合计

70

50

120

计算观测值

没有的把握认为优质树苗与AB两个试验区有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直三棱柱的底面为等腰直角三角形,点为线段的中点.

1)探究直线与平面的位置关系,并说明理由;

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,把和叫做数列的前项泛和,记作为.已知数列的前项和为,且.

1)求数列的通项公式;

2)数列与数列的前项的泛和为,且恒成立,求实数的取值范围;

3)从数列的前项中,任取项从小到大依次排列,得到数列;再将余下的项从大到小依次排列,得到数列.求数列与数列的前项的泛和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形与四边形都是直角梯形,,四边形为菱形,

1)求证:平面平面

2)若二面角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,是以为斜边的等腰直角三角形,是等边三角形,,如图②,将沿折起使平面平面分别为的中点,点在棱上,且,点在棱上,且.

1)在棱上是否存在一点,使平面平面?若存在,求的值;若不存在,请说明理由.

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,ED1D的中点,ACBD的交点为O

1)求证:EO⊥平面AB1C

2)在由正方体的顶点确定的平面中,是否存在与平面AB1C平行的平面?证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,有下列四个命题:

①函数是奇函数;

②函数是单调函数;

③当时,函数恒成立;

④当时,函数有一个零点,

其中正确的是____________

查看答案和解析>>

同步练习册答案