【题目】在直角坐标系中,设椭圆的左焦点为,短轴的两个端点分别为,且,点在上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆和圆分别相切于,两点,当面积取得最大值时,求直线的方程.
【答案】(Ⅰ) .(Ⅱ) .
【解析】
(Ⅰ) 由,可得;由椭圆经过点,得,求出后可得椭圆的方程.
(Ⅱ)将直线方程与椭圆方程联立消元后根据判别式为零可得,解方程可得切点坐标为,再根据直线和圆相切得到,然后根据在直角三角形中求出,进而得到,将代入后消去再用基本不等式可得当三角形面积最大时,于是可得,于是直线方程可求.
(Ⅰ)由,可得,①
由椭圆经过点,得,②
由①②得,
所以椭圆的方程为.
(Ⅱ)由消去整理得(*),
由直线与椭圆相切得,
,
整理得,
故方程(*)化为,即,
解得,
设,则,故,
因此.
又直线与圆相切,可得.
所以,
所以,
将式代入上式可得
,
由得,
所以,当且仅当时等号成立,即时取得最大值.
由,得,
所以直线的方程为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,设直线与轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.
(1)若直线的倾斜角为,求的值;
(2)设直线交直线于点,证明:直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)若函数在上是增函数,求正数的取值范围;
(2)当时,设函数的图象与x轴的交点为,,曲线在,两点处的切线斜率分别为,,求证:+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.,分别表示甲、乙两班各自5名学生学分的标准差,则_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“克拉茨猜想”又称“猜想”,是德国数学家洛萨克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数经过6次运算后得到1,则的值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为 (为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线与恰有一个公共点.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)已知曲线上两点,满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,焦距为.
(1)求椭圆的标准方程;
(2)若一直线与椭圆相交于、两点(、不是椭圆的顶点),以为直径的圆过椭圆的上顶点,求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com