【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为 .
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
【答案】
(1)解:直线AB方程为bx﹣ay﹣ab=0,
依题意可得: ,
解得:a2=3,b=1,
∴椭圆的方程为
(2)解:假设存在这样的值.
,
得(1+3k2)x2+12kx+9=0,
∴△=(12k)2﹣36(1+3k2)>0…①,
设C(x1,y1),D(x2,y2),
则
而y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,
要使以CD为直径的圆过点E(﹣1,0),
当且仅当CE⊥DE时,
则y1y2+(x1+1)(x2+1)=0,
∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③
将②代入③整理得k= ,
经验证k= 使得①成立综上可知,存在k= 使得以CD为直径的圆过点E
【解析】(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得: ,由此能求出椭圆的方程.(2)假设存在这样的值. ,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解.
科目:高中数学 来源: 题型:
【题目】已知直线l:y=ax+1﹣a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线方程:①y=﹣2|x﹣1|;②y=x2;③(x﹣1)2+(y﹣1)2=1;④x2+3y2=4;则其中直线l的“绝对曲线”有( )
A.①④
B.②③
C.②④
D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生态公园的平面图呈长方形(如图),已知生态公园的长AB=8(km),宽AD=4(km),M,N分别为长方形ABCD边AD,DC的中点,P,Q为长方形ABCD边AB,BC(不含端点)上的一点.现公园管理处拟修建观光车道P﹣Q﹣N﹣M﹣P,要求观光车道围成四边形(如图阴影部分)的面积为15(km2),设BP=x(km),BQ=y(km),
(1)试写出y关于x的函数关系式,并求出x的取值范围;
(2)若B为公园入口,P,Q为观光车站,观光车站P位于线段AB靠近入口B的一侧.经测算,每天由B入口至观光车站P,Q乘坐观光车的游客数量相等,均为1万人,问如何确定观光车站P,Q的位置,使所有游客步行距离之和最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的方程为(2﹣m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求证:直线l恒过定点;
(2)当m变化时,求点P(3,1)到直线l的距离的最大值;
(3)若直线l分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= x2+ax﹣lnx(a∈R)
(1)当a=1时,求函数f(x)的极值;
求实数m的取值范围.
(2)当a≥2时,讨论函数f(x)的单调性;
(3)若对任意a∈(2,3)及任意x1 , x2∈[1,2],恒有ma+ln2>|f(x1)﹣f(x2)|成立,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,记数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,且3Tn=Sn2+2Sn,n∈N*.
(Ⅰ)求a1的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若k,t∈N*,且S1,Sk-S1,St-Sk成等比数列,求k和t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在圆内接△ABC,A,B,C所对的边分别为a,b,c,满足acosC+ccosA=2bcosB.
(1)求B的大小;
(2)若点D是劣弧 上一点,AB=3,BC=2,AD=1,求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com