精英家教网 > 高中数学 > 题目详情
17.“x=1”是“x2-3x+2=0”的(  )
A.必要但不充分条件B.充分但不必要条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:由x2-3x+2=0得x=1或x=2,
则“x=1”是“x2-3x+2=0”的充分不必要条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,利用充分条件和必要条件的定义是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知R上的连续函数g(x)满足:
①当x>0时,g'(x)>0恒成立(g'(x)为函数g(x)的导函数);
②对任意的x∈R都有g(x)=g(-x),又函数f(x)满足:对任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.
当$x∈[-\sqrt{3},\sqrt{3}]$时,f(x)=x3-3x.若关于x的不等式g[f(x)]≤g(a2-a+2)对$x∈[-\frac{3}{2}-2\sqrt{3},\frac{3}{2}+2\sqrt{3}]$恒成立,则a的取值范围是(  )
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.集合{1,2,4}的真子集个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x_{\;}^2}}{{a_{\;}^2}}-\frac{{y_{\;}^2}}{{b_{\;}^2}}=1(a>0,b>0)$的离心率为$\sqrt{10}$,则双曲线C的渐近线方程为(  )
A.y=±3xB.y=±2xC.$y=±\frac{1}{3}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知以F为焦点的抛物线y2=4x上的两点A,B满足$\overrightarrow{AF}=\frac{3}{2}\overrightarrow{FB}$,则直线AB的斜率为(  )
A.$±\sqrt{3}$B.$±\sqrt{13}$C.±4D.$±2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一个焦点F(c,0),虚轴的一个端点为B(0,b),如果直线FB与该双曲线的渐近线$y=\frac{b}{a}x$垂直,那么此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{{\sqrt{5}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点P是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上一点,F1,F2分别是椭圆的左、右焦点,若|PF1||PF2|=12,则∠F1PF2的大小60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}(3a-1)x+4a,x<1\\{log_a}x,x≥1\end{array}$满足:对任意实数x1,x2,当x1<x2时,总有f(x1)-f(x2)>0,那么实数a的取值范围是[$\frac{1}{7}$,$\frac{1}{3}$).

查看答案和解析>>

同步练习册答案