精英家教网 > 高中数学 > 题目详情
已知数列{an}满足an+2-an+1=an+1-an,n∈N*,且a5=
π
2
,若函数f(x)=sin2x+2cos2
x
2
,记yn=f(an),则数列{yn}的前9项和为(  )
A、0B、-9C、9D、1
考点:数列递推式,数列与三角函数的综合
专题:计算题,等差数列与等比数列,三角函数的求值
分析:确定数列{an}是等差数列,利用等差数列的性质,可得f(a1)+f(a9)=f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2,由此可得结论.
解答: 解:∵数列{an}满足an+2-an+1=an+1-an,n∈N*
∴数列{an}是等差数列,
∵a5=
π
2
,∴a1+a9=a2+a8=a3+a7=a4+a6=2a5=π,
∵f(x)=sin2x+2cos2
x
2

∴f(x)=sin2x+cosx+1,
∴f(a1)+f(a9)=sin2a1+cosa1+1+sin2a9+cosa9+1=2,
同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2,
∵f(a5)=1,
∴数列{yn}的前9项和为9.
故选C.
点评:本题考查等差数列的性质,考查数列与函数的联系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆的焦点,P为椭圆上一点,∠F1PF2=60°.
(1)求椭圆离心率的取值范围;
(2)求证:△F1PF2的面积只与椭圆的短轴长有关.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,4),B(2,8)是直线y=x+6上两点,若线段AB与椭圆
x2
a2
+
y2
a2-4
=1有公共点,则正数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x满足2x2≤3x,则函数f(x)=(k2+1)x2-2(k2+1)x+3(k∈R)的最大值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算
.
a
c
b
d
.
=ad-bc,若函数f(x)=
.
x-1
-x
2
x+3
.
在[-4,m]上单调递减,则实数m的取值范围(  )
A、[-2,+∞)
B、(-∞,-2]
C、[-4,-2]
D、(-4,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d不等于0,Sn是其前n项和,给出下列命题:
①给定n(n≥2,且n∈N*),对于一切k∈N*(k<n),都有an-k+an+k=2an成立;
②存在k∈N*,使得ak-ak+1与a2k+1-a2k-3同号;
③若d>0.且S3=S8,则S5与S6都是数列{Sn}中的最小项
④点(1,
S1
1
),(2,
S2
2
),(3,
S3
3
),…,(n,
Sn
n
)(n∈N*),…,在同一条直线上.
其中正确命题的序号是
 
.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

为响应国家扩大内需的政策,某厂家拟在2014年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用t(t≥0)万元满足x=7-
k
t+1
(k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2014年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).
(1)将该厂家2014年该产品的利润y万元表示为年促销费用t万元的函数;并求年促销费用投入多少万元时,厂家利润最大?
(2)若规定年促销费用不能超过2万元,则年产量为多少时,厂家利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有
 
 邀请方案.(用数字回答)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是2013年元旦歌咏比赛,七位评委为某班打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为
 

查看答案和解析>>

同步练习册答案