精英家教网 > 高中数学 > 题目详情
19.已知集合A={x|x≤-1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B和A∪B;
(2)若A∩B=B,求实数a的取值范围.

分析 (1)a=-1,B={x|-2≤x≤1},即可求A∩B和A∪B;
(2)由A∩B=B,得B⊆A,然后分B为∅何B不为∅讨论,当B不是∅时,由两集合端点值间的关系列不等式组求得a的取值范围.

解答 解:(1)a=-1,B={x|-2≤x≤1}.
∴A∩B={x|-2≤x≤-1},A∪B={x|x≤1或x≥5};
(2)由A∩B=B,得B⊆A,
若2a>a+2,即a>2,B=∅,满足B⊆A;
当2a≤a+2,即a≤2时,要使B⊆A,
则a+2≤-1或2a≥5,解得a≤-3.
∴使A∩B=B的a的取值范围是a≤-3或a>2.

点评 本题考查了交集及其运算,考查了分类讨论的解题思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数y=$\sqrt{-{x}^{2}+bx+c}$的定义域是{x|2≤x≤3},则b和c的值分别为5,-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,命题q:函数f(x)=(1-a)x在定义域内是增函数,若p∧q和¬q都是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数的解析式为y=x2-2x,它的值域是{-1,3,8},则满足以上条件的函数的个数为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=sin(2x+$\frac{π}{6}$)(x∈[0,$\frac{7π}{6}$]),若方程f(x)=m恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值是(  )
A.$\frac{3π}{4}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=PD=2,E,F,G分别是线段PA,PD,CD的中点
(1)求证:PB∥平面EFG;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为$\frac{4}{5}$,若存在,求出DQ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:若a>1,则ax>logax恒成立;命题q:$f(x)=\left\{\begin{array}{l}\frac{1}{x}({x>0})\\{e^x}({x≤0})\end{array}\right.$,若F(x)=f(x)+x,x∈R,则F(x)的值域是(-∞,1]∪[2,+∞).下列选项为真命题的是(  )
A.(¬p)∧(¬q)B.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$ax2+2x-lnx,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,BC边上的中线AD长为3,且BD=2,$sinB=\frac{{3\sqrt{6}}}{8}$.
(Ⅰ)求sin∠BAD的值;
(Ⅱ)求cos∠ADC及AC边的长.

查看答案和解析>>

同步练习册答案