精英家教网 > 高中数学 > 题目详情
7.已知f(x)+f(1-x)=2,an=f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*),则数列{an}的通项公式为(  )
A.an=n-1B.an=nC.an=n+1D.an=n2

分析 由f(x)+f(1-x)=2,an=f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1),“倒叙相加”即可得出.

解答 解:∵f(x)+f(1-x)=2,an=f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1),
∴2an=[f(0)+f(1)]+[f($\frac{1}{n}$)+f($\frac{n-1}{n}$)]+…+[f(1)+f(0)]=2(n+1),
∴an=n+1.
故选:C.

点评 本题考查了数列“倒叙相加”求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.直线x-2y+3=0与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$相交于A,B两点,且P(-1,1)恰好为AB中点,则椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的函数f(x),g(x)满足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)<f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,若有穷数列$\left\{{\frac{f(n)}{g(n)}}\right\},n∈{N^*}$的前n项和为$\frac{255}{256}$,则n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)设函数f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,计算f(f(-4))的值;
(Ⅱ)计算:log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅲ)计算:${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四组函数中,相等的两个函数是(  )
A.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$B.f(x)=2lgx,g(x)=lgx2C.f(x)=($\sqrt{x}$)2,g(x)=xD.f(x)=x,g(t)=t

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“x=1”是“x2-1=0”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列关于概率的理解中正确的命题的个数是
①掷10次硬币出现4次正面,所以掷硬币出现正面的概率是0.4;
②某种体育彩票的中奖概率为$\frac{1}{1000}$,则买1000张这种彩票一定能中奖;
③孝感气象台预报明天孝感降雨的概率为70%是指明天孝感有70%的区域下雨,30%的区域不下雨.(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$y=\sqrt{1-{{(x-1)}^2}},x∈[1,2]$,对于满足1<x1<x2<2的任意x1,x2,给出下列结论:
①f(x2)-f(x1)>x2-x1;            ②x2f(x1)>x1f(x2);
③(x2-x1)[f(x2)-f(x1)]<0;      ④(x2-x1)[f(x2)-f(x1)]>0
其中正确结论有②③(写上所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)满足f(-x)=-f(x),并且当x≥0时,f(x)=2x+a,则f(-2)=-4;当x<0时,f(x)=-2-x

查看答案和解析>>

同步练习册答案