精英家教网 > 高中数学 > 题目详情
20.如果等差数列{an}的前4项的和是2,前9项的和是-6,求其前n项和的公式.

分析 设等差数列{an}的首项为a1,公差为d,由题意列方程组求出首项和公差,则其前n项和公式可求.

解答 解:设等差数列{an}的首项为a1,公差为d,
由题意可得:$\left\{\begin{array}{l}{4{a}_{1}+\frac{4×3d}{2}=2}\\{9{a}_{1}+\frac{9×8d}{2}=-6}\end{array}\right.$,解得:${a}_{1}=\frac{6}{5},d=-\frac{7}{15}$.
∴${S}_{n}=\frac{6}{5}n+\frac{n(n-1)(-\frac{7}{15})}{2}=-\frac{7}{30}{n}^{2}+\frac{43}{30}n$.

点评 本题考查等差数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{5}}{5}$,则tan(π-α)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设Sn是数列{an}的前n项和,若a1=1且an=2Sn-1(n≥2).
(1)求证{Sn}是等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{1,x=0}\\{-1,x<0}\end{array}\right.$.
(1)画出函数的图象;
(2)求f(1),f(-3),f[f(-3)],f{f[f(-3)]}的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an},c为常数,以下说法中正确的是(  )
A.{an}是等差数列时,{can}不一定是等差数列
B.{an}不是等差数列时,{can}一定不是等差数列
C.{can}是等差数列时,{an}一定是等差数列
D.{can}不是等差数列时,{an}一定不是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)=$\left\{\begin{array}{l}{x-2,x≥10}\\{f(x+6),x<10}\end{array}\right.$,则f(5)的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知两个等差数列{an},{bn},它们的前n项和分别是Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+1}{3n-1}$,则$\frac{{a}_{9}}{{b}_{9}}$=$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(t)=$\left\{\begin{array}{l}{3×{2}^{t}-24,0≤t≤10}\\{-{2}^{t-5}+128,10<t≤15}\end{array}\right.$.
(1)求使f(t)=0成立的t的值;
(2)求函数f(t)取得最大值和最小值时对应的t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=2x2-(2a-1)x-1;
(1)若a<1,判断f(x)在区间($\frac{1}{4}$,+∞)的单调性并用定义证明;
(2)若f(x)在区间[-1,2]上不是单调函数,用集合表示实数a的取值范围.

查看答案和解析>>

同步练习册答案