精英家教网 > 高中数学 > 题目详情
若△ABC的内角A、B、C的对边分别是a,b,c,且asinA+csinC-bsinB=
2
asinC,则cosB等于
 
考点:正弦定理,余弦定理
专题:解三角形
分析:由条件利用正弦定理求得 a2+c2-b2=
2
ac,再利用余弦定理求得cosB的值.
解答: 解:△ABC中,∵asinA+csinC-bsinB=
2
asinC,则由正弦定理可得 a2+c2-b2=
2
ac,
∴由余弦定理可得cosB=
a2+c2-b2
2ac
=
2
2

故答案为:
2
2
点评:本题主要考查正弦定理和余弦定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
1
x2+1
,x<0
0,x=0
x-
1
x
,x>0
,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+2x.
(1)求f(0)的值;
(2)求此函数在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=1,c=
3
,A=30°,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足2f(x)+f(
1
x
)=6x+
3
x
,对x≠0恒成立,则f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中,AD是高,O是外心,AO的延长线交过O、B、C三点的圆于P,自P作PE⊥AB于E,PF⊥AC于F.求证:DEPF是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数的图象如图所示,为了得到的图象,则只要将f(x)=cos2x的函数的图象(  )
A、向右平移
π
6
个单位
B、向右平移
π
12
个单位
C、向左平移
π
6
个单位
D、向左平移
π
12
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,满足“?x1,x2∈(0,+∞)且x1≠x2,有(x1-x2)[f(x1)-f(x2)]<0”的是(  )
A、f(x)=2x
B、f(x)=-(x-1)2
C、f(x)=
1
x+1
D、f(x)=ln(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

满足条件{1,3}∪M={1,3,5}的一个可能的集合M是
 
.(写出一个即可)

查看答案和解析>>

同步练习册答案