精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形是正方形, 平面, , 分别为的中点,且.

(1)求证:平面平面

(2)求证: 平面.

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)推导出,由此证明面

(2)推导出 ,又则可证得平面.

试题解析:

(1)证明:E,G,F分别为MB,PB,PC的中点,

又四边形ABCD是正方形,

在面PMA外,PM,AD在面PMA内, EGPMA,GFPMA,

都在平面EFG内且相交,

(2)证明 由已知MA平面ABCDPDMA

PD平面ABCD.

BC平面ABCD,∴PDBC.

四边形ABCD为正方形,BCDC.

PDDCD,∴BC平面PDC.

,在正方形中,

中点,

,平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,已知(sin A+sin B+sin C)·(sin B+sin C-sin A)=3sin Bsin C.

(Ⅰ)求角A的值;

(Ⅱ)sin Bcos C的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}和{bn}的每一项都是正数,且a1=8,b1=16,且an , bn , an+1成等差数列,bn , an+1 , bn+1成等比数列.
(1)求a2 , b2的值;
(2)求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:
①对任意的α∈R都有sin3α=3sinα﹣4sin3α成立;
②对任意的△ABC都有等式a=bcosA+ccosB成立;
③满足“三边是连续的三个正整数且最大角是最小的2倍”的三角形存在且唯一;
④若A,B是钝角△ABC的二锐角,则sinA+sinB<cosA+cosB.
其中正确的命题的个数是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=tx2-(22t+60)x+144t(x>0).

(1)要使f(x)≥0恒成立,求t的最小值;

(2)令f(x)=0,求使t>20成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为原点,离心率,其中一个焦点的坐标为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)当点在椭圆上运动时,设动点的运动轨迹为若点满足: 其中上的点.直线的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.

(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;

(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间与极值;

(2)若,关于的不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象,若对满足|f(x1)﹣g(x2)|=2的x1、x2有|x1﹣x2|min= ,则φ=

查看答案和解析>>

同步练习册答案