精英家教网 > 高中数学 > 题目详情

【题目】某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在下图中的两条线段上,该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示.

第t天

4

10

16

22

Q(万股)

36

30

24

18


(1)根据提供的图象,写出该种股票每股交易价格P(元)与时间t(天)所满足的函数关系式;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)在(2)的结论下,用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几日交易额最大,最大值为多少?

【答案】
(1)解:
(2)解:设Q=at+b(a,b为常数),将(4,36)与(10,30)的坐标代入,

日交易量Q(万股)与时间t(天)的一次函数关系式为Q=40﹣t,0<t≤30,t∈N*


(3)解:由(1)(2)可得

当0<t≤20时,当t=15时,ymax=125;

上是减函数,y<y(20)<y(15)=125.

所以,第15日交易额最大,最大值为125万元


【解析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(2,0),点B(﹣2,0),直线l:(λ+3)x+(λ﹣1)y﹣4λ=0(其中λ∈R).
(1)求直线l所经过的定点P的坐标;
(2)若直线l与线段AB有公共点,求λ的取值范围;
(3)若分别过A,B且斜率为 的两条平行直线截直线l所得线段的长为4 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A=R,集合B={y|y>0},下列对应关系中是从集合A到集合B的映射的是(
A.x→y=|x|
B.x→y=
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x , 函数g(x)=log x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[( t+1 , ( t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣4x+a+3,g(x)=mx+5﹣2m
(1)当a=﹣3,m=0时,求方程f(x)﹣g(x)=0的解;
(2)若方程f(x)=0在[﹣1,1]上有实数根,求实数a的取值范围;
(3)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知销售“笔记本电脑”和“台式电脑”所得的利润分别是P(单位:万元)和Q(单位:万元),它们与进货资金t(单位:万元)的关系有经验公式P= t和Q= .某商场决定投入进货资金50万元,全部用来购入这两种电脑,那么该商场应如何分配进货资金,才能使销售电脑获得的利润y(单位:万元)最大?最大利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的上、下焦点, 是抛物线的焦点,点在第二象限的交点,且

(1)求椭圆的方程;

(2)与圆相切的直线交椭圆

若椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,x∈R.
(1)求证:对一切实数x,f(x)=f(1﹣x)恒为定值.
(2)计算:f(﹣6)+f(﹣5)+f(﹣4)+f(﹣3)+…+f(0)+…+f(6)+f(7).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线x2 =1,过点P(2,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?

查看答案和解析>>

同步练习册答案