精英家教网 > 高中数学 > 题目详情
椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率(   )
A.B.C.D.
B

试题分析:由题意,设椭圆方程,焦距为,由题意,,所以离心率.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线与椭圆有公共焦点,且椭圆过点.
(1)求椭圆方程;
(2)点是椭圆的上下顶点,点为右顶点,记过点的圆为⊙,过点作⊙ 的切线,求直线的方程;
(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点,试问直线是否经过定点,若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图示:已知抛物线的焦点为,过点作直线交抛物线两点,经过两点分别作抛物线的切线,切线相交于点.

(1)当点在第二象限,且到准线距离为时,求
(2)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆内的一点,过点P的弦恰好以P为中点,那么这弦所在的直线方程(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线过椭圆的左焦点F,且与椭圆相交于P、Q两点,M为PQ的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2= 2x的准线方程是(   )
A.y=B.y=-C.x=D.x=-

查看答案和解析>>

同步练习册答案