精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是[0,1]上的不减函数,即对于0≤x1≤x2≤1有f(x1)≤f(x2),且满足(1)f(0)=0;(2)f( )= f(x);(3)f(1﹣x)=1﹣f(x),则f( )=(
A.
B.
C.
D.

【答案】C
【解析】解:∵(1)f(0)=0;(2)f( )= f(x);(3)f(1﹣x)=1﹣f(x),
∴f(1)=1﹣f(0)=1,
f( )= f(1)= ,f(1﹣ )=1﹣f( ).即f( )=1﹣ =
f( )= f( )= × = ,f( )= f( )= × =
f( )= f( )= × = ,f( )= f( )= × =
f( )= f( )= × = ,f( )= f( )= × =
f( )= f( )= × = ,f( )= f( )= × =
f( )= f( )= × = ,f( )= f( )= × =
f( )= f( )= × = ,f( )= f( )= × =
∵对于0≤x1≤x2≤1有f(x1)≤f(x2),
∴当 ≤x≤ 时,f(x)=
∈[ ]时,∴f( )=
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心在直线上,又直线与圆C交于P,Q两点.

1)求圆C的方程;

2)若,求实数的值;

(3)过点作直线,且交圆CM,N两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 则异面直线BA1与AC1所成的角等于(  )

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.
(1)设月用电x度时,应交电费y元,写出y关于x的函数关系式;
(2)小明家第一季度缴纳电费情况如下:问小明家第一季度共用电多少度?

月份

一月

二月

三月

合计

交费金额

76元

63元

45.6元

184.6元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数f(x)=ax(a>0,a≠1).
(1)若f(x)的图象过点(1,2),求其解析式;
(2)若 ,且不等式g(x2+x)>g(3﹣x)成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.

(1)问捕捞几年后总盈利最大,最大是多少?

(2)问捕捞几年后的平均利润最大,最大是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆外切,与圆内切.

(Ⅰ)试求动圆圆心的轨迹的方程;

(Ⅱ)与圆相切的直线与轨迹交于两点,若直线的斜率成等比数列,试求直线的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b为何值时,ax2+bx+30的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax3+bx+ +2,满足f(﹣3)=﹣2015,则f(3)的值为

查看答案和解析>>

同步练习册答案