精英家教网 > 高中数学 > 题目详情

【题目】袋中装有大小形状完全相同的5个小球,其中3个白球的标号分别为1、 2 、3, 2 个黑球的标号分别为1、3.

(Ⅰ)从袋中随机摸出两个球,求摸到的两球颜色与标号都不相同的概率;

(Ⅱ)从袋中有放回地摸球,摸两次,每次摸出一个球,求摸出的两球的标号之和小于4 的概率.

【答案】(1) .

(2).

【解析】分析:(1)记5个球为白1、白2、白3、黑1、黑3,由此列举法能求出从中摸两个球,摸到的两球颜色与标号都不相同的概率.
(2)从中有放回的摸两次,每次摸球有5种结果,所以共有25种情况,利用列举法能求出摸出的两球的标号之和小于4的概率.

详解:

Ⅰ)记5个球为白1、白2、白3、黑1、黑3,从中摸两个球共有:(白1、白2)、

(白1、白3)、(白1、黑1)、(白1、黑3)、(白2、白3)、(白2、黑1)、(白2、黑3)、(白3、黑1)、

(白3、黑3)、(黑1、黑3)共10种情况

两球颜色和标号都不相同的有(白1、黑3)、(白2、黑1)、(白2、黑3)、(白3、黑1)

4 种情况,则所求概率为

Ⅱ)从中有放回的摸两次,每次摸球有5种结果,所以共有 25种情况

其中标号之和小于 4 的有(白1、白1)、(白1、黑1)、(黑1、白1)、(黑1、黑1)、(白

1、白2)、(黑1、白2)、(白2、白1)、(白2、黑1)共8种情况

所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列命题:,则;②,则;③,则;④;⑤,则;⑥正数满足,则的最小值为.其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形分别在现将四边形沿折起使平面平面.

(Ⅰ)若在折叠后的线段上是否存在一点使得平面若存在求出的值若不存在说明理由

(Ⅱ)求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=2m+(4-m2)i,当实数m取何值时,复数z对应的点:

(1)位于虚轴上?

(2)位于一、三象限

(3)位于以原点为圆心,以4为半径的圆上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(l,2)在函数f(x)=ax3的图象上,则过点A的曲线C:y=fx)的切线方程是(  )

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cos,直线l的参数方程为 (t为参数),直线l与圆C交于AB两点,P是圆C上不同于AB的任意一点.

(1)求圆心的极坐标;

(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积.弧田,由圆弧和其所对的弦所围成.公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为,弦长等于米的弧田. 按照上述经验公式计算所得弧田面积与实际面积的误差为_______平方米.(用“实际面积减去弧田面积”计算)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(1) 求出4个人中恰有2个人去 参加甲游戏的概率;

(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;

(3)用分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望

查看答案和解析>>

同步练习册答案