精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=(mx+1)(1nx-3).
(1)若m=1,求曲线y=f(x)在x=1处的切线方程;
(2)若函数f(x)在(0,+∞)上是增函数,求实数m的取值范围.

分析 (1)求出f(x)的导数,求得切线的斜率和切点,由点斜式方程,可得切线的方程;
(2)由题意可得f′(x)=m(lnx-3)+(mx+1)•$\frac{1}{x}$≥0在(0,+∞)恒成立.即有mx(lnx-2)+1≥0,对m讨论,m=0,m<0,m>0,运用参数分离和构造函数g(x)=x(lnx-2),求出导数,判断单调性,可得最值,进而解得m的范围.

解答 解:(1)函数f(x)=(x+1)(1nx-3)的导数为
f′(x)=lnx-3+(x+1)•$\frac{1}{x}$=lnx-2+$\frac{1}{x}$,
y=f(x)在x=1处的切线斜率为-1,切点为(1,-6),
则y=f(x)在x=1处的切线的方程为y+6=-(x-1),
即为x+y+5=0;
(2)函数f(x)在(0,+∞)上是增函数,
即为f′(x)=m(lnx-3)+(mx+1)•$\frac{1}{x}$≥0在(0,+∞)恒成立.
即有mx(lnx-2)+1≥0,
当m=0时,显然成立;
当m>0时,x(lnx-2)≥-$\frac{1}{m}$,由g(x)=x(lnx-2)的导数g′(x)=lnx-1,
当x>e时,g(x)递增;当0<x<e时,g(x)递减.
则x=e处取得极小值,且为最小值-e,
则-e≥-$\frac{1}{m}$,解得0<m≤$\frac{1}{e}$;
当m<0时,x(lnx-2)≤-$\frac{1}{m}$,
由g(x)=x(lnx-2)有最小值,无最大值,故不成立.
综上可得,m的取值范围是[0,$\frac{1}{e}$].

点评 本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查不等式恒成立问题的解法,注意运用参数分离和分类讨论的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x-1-2sinπx的所有零点之和等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2+$\frac{1}{x}$,f′(x)为f(x)的导函数,则f′(1)的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\frac{ax+1}{x+2}(a∈R)$,则“f(2)<f(3)”是“f(x)在区间(-2,+∞)上单调递增”的什么条件.(  )
A.“充要”B.“充分不必要”
C.“必要不充分”D.“既不充分也不必要”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)={({\frac{1}{2}})^x}$在区间[0,1]上的最大值与最小值的和为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若不等式|2x+1|-|x-4|≥m恒成立,则实数m的取值范围是(  )
A.(-∞,-1]B.(-∞,-$\frac{5}{2}$]C.(-∞,-$\frac{9}{2}$]D.(-∞,-5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知动点P在圆x2+y2=4上运动,过点P作x轴的垂线段,垂足为D,求线段PD的中点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.a=sin(sin1),b=cos(cos1),c=tan(tan1),下列正确的是(  )
A.b<c<aB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设p:A={x|2x2-3ax+a2<0},q:B={x|x2+3x-10≤0}.
(Ⅰ)求A;
(Ⅱ)当a<0时,若¬p是¬q的必要不充分条件,求a的取值范围.

查看答案和解析>>

同步练习册答案