ÔÚÊýÁÐ{an}ÖУ¬Èô¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓУ¨tΪ³£Êý£©£¬Ôò³ÆÊýÁÐ{an}Ϊ±ÈµÈ²îÊýÁУ¬t³ÆΪ±È¹«²î£®ÏÖ¸ø³öÒÔÏÂÃüÌ⣺
¢ÙµÈ±ÈÊýÁÐÒ»¶¨ÊDZȵȲîÊýÁУ¬µÈ²îÊýÁв»Ò»¶¨ÊDZȵȲîÊýÁУ»
¢ÚÈôÊýÁÐ{an}Âú×㣬ÔòÊýÁÐ{an}ÊDZȵȲîÊýÁУ¬Çұȹ«²î£»
¢ÛÈôÊýÁÐ{cn}Âú×ãc1=1£¬c2=1£¬cn=cn-1+cn-2£¨n¡Ý3£©£¬Ôò¸ÃÊýÁв»ÊDZȵȲîÊýÁУ»
¢ÜÈô{an}ÊǵȲîÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬ÔòÊýÁÐ{anbn}ÊDZȵȲîÊýÁУ®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ£¨ £©
A£®¢Ù¢Ú
B£®¢Ú¢Û
C£®¢Û¢Ü
D£®¢Ù¢Û
¡¾´ð°¸¡¿·ÖÎö£º¢ÙÓɵȱÈÊýÁеÄÌص㣬´úÈë¿ÉÖªÂú×ãж¨Ò壬ÈôµÈ²îÊýÁеĹ«²îd=0ʱÂú×ãÌâÒ⣬µ±d¡Ù0ʱ£¬²»ÊDZȵȲîÊýÁУ¬¿ÉÖªÕýÈ·£»¢Ú´úÈëж¨ÒåÑéÖ¤¿ÉÖª£¬²»Âú×㣻¢ÛÓɵÝÍƹ«Ê½¼ÆËãÊýÁеÄÇ°4Ï¿ÉµÃ£¬¹Ê¸ÃÊýÁв»ÊDZȵȲîÊýÁУ»¢Ü¿É¾Ù{an}Ϊ0ÁУ¬ÔòÊýÁÐ{anbn}Ϊ0ÁУ¬ÏÔÈ»²»Âú×㶨Ò壮
½â´ð£º½â£º¢ÙÈôÊýÁÐ{an}ΪµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪq£¬Ôò£¬Îª³£Êý£¬¹ÊµÈ±ÈÊýÁÐÒ»¶¨ÊDZȵȲîÊýÁУ¬
ÈôÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÇÒ¹«²îΪd£¬µ±d=0ʱ£¬£¬Îª³£Êý£¬ÊDZȵȲîÊýÁУ¬
µ±d¡Ù0ʱ£¬²»Îª³£Êý£¬¹Ê²»ÊDZȵȲîÊýÁУ¬¹ÊµÈ²îÊýÁв»Ò»¶¨ÊDZȵȲîÊýÁУ¬¹ÊÕýÈ·£»
¢ÚÈôÊýÁÐ{an}Âú×㣬Ôò=-²»Îª³£Êý£¬¹ÊÊýÁÐ{an}²»ÊDZȵȲîÊýÁУ¬¹Ê´íÎó£»
¢ÛÈôÊýÁÐ{cn}Âú×ãc1=1£¬c2=1£¬cn=cn-1+cn-2£¨n¡Ý3£©£¬¿ÉµÃc3=2£¬c4=3£¬¹Ê£¬
ÏÔÈ»£¬¹Ê¸ÃÊýÁв»ÊDZȵȲîÊýÁУ¬¹ÊÕýÈ·£»
¢ÜÈô{an}ÊǵȲîÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬¿É¾Ù{an}Ϊ0ÁУ¬ÔòÊýÁÐ{anbn}Ϊ0ÁУ¬ÏÔÈ»²»Âú×㶨Ò壬¼´ÊýÁÐ{anbn}²»ÊDZȵȲîÊýÁУ¬¹Ê´íÎó£®
¹Ê´ð°¸Îª£ºD
µãÆÀ£º±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅжÏÓëÓ¦Óã¬Éæ¼°µÈ²îÊýÁк͵ȱÈÊýÁÐÒÔ¼°Ð¶¨Ò壬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬Èôa1=
1
2
£¬an=
1
1-an-1
£¨n¡Ý2£¬n¡ÊN*£©£¬Ôòa2010µÈÓÚ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬Èôan2-an-12=p£¨n¡Ý2£¬n¡ÊN*£¬pΪ³£Êý£©£¬Ôò³Æ{an}Ϊ¡°µÈ·½²îÊýÁС±£¬ÏÂÁÐÊǶԡ°µÈ·½²îÊýÁС±µÄÅжϣ»
¢ÙÈô{an}Êǵȷ½²îÊýÁУ¬Ôò{an2}ÊǵȲîÊýÁУ»
¢Ú{£¨-1£©n}Êǵȷ½²îÊýÁУ»
¢ÛÈô{an}Êǵȷ½²îÊýÁУ¬Ôò{akn}£¨k¡ÊN*£¬kΪ³£Êý£©Ò²Êǵȷ½²îÊýÁУ»
¢ÜÈô{an}¼ÈÊǵȷ½²îÊýÁУ¬ÓÖÊǵȲîÊýÁУ¬Ôò¸ÃÊýÁÐΪ³£ÊýÁУ®
ÆäÖÐÕýÈ·ÃüÌâÐòºÅΪ£¨¡¡¡¡£©
A¡¢¢Ù¢Ú¢ÛB¡¢¢Ù¢Ú¢ÜC¡¢¢Ù¢Ú¢Û¢ÜD¡¢¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬Èôa1=2£¬an=
1
1-an-1
(n¡Ý2£¬n¡ÊN*)£¬Ôòa7
µÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬Èôa1=2£¬a2=6£¬ÇÒµ±n¡ÊN*ʱ£¬an+2ÊÇan•an+1µÄ¸öλÊý×Ö£¬Ôòa2011=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÎÞÇîÊýÁÐ{an}¾ßÓÐÈçÏÂÐÔÖÊ£º¢Ùa1ΪÕýÕûÊý£»¢Ú¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬µ±anΪżÊýʱ£¬an+1=
a n
2
£»µ±anΪÆæÊýʱ£¬an+1=
an+1
2
£®ÔÚÊýÁÐ{an}ÖУ¬Èôµ±n¡Ýkʱ£¬an=1£¬µ±1¡Ün£¼kʱ£¬an£¾1£¨k¡Ý2£¬k¡ÊN*£©£¬ÔòÊ×Ïîa1¿ÉÈ¡ÊýÖµµÄ¸öÊýΪ
 
£¨ÓÃk±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸