精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ax,g(x)=a-2x+1,其中a>0,且a≠1.
(1)若函数f(x)的图象经过点(2,4),求f(-1)的值;
(2)解不等式:f(x)>g(x).

分析 (1)根据函数f(x)=ax 的图象经过点(2,4),求得a的值.
(2)不等式即ax >a-2x+1,分类讨论,求得x的范围.

解答 解:(1)∵函数f(x)=ax 的图象经过点(2,4),∴a2=4,a=2,
函数f(x)=2x,∴f(-1)=$\frac{1}{2}$.
(2)由f(x)>g(x),可得ax >a-2x+1
当a>1时,x>-2x+1,求得x>1.
当0<a<1时,x<-2x+1,求得0<x<$\frac{1}{3}$.

点评 本题主要考查指数函数的单调性,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足x2+y2-4x-2y+4=0,则$\frac{x+y}{x}$的取值范围为[1,$\frac{7}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,则实数a的值为(  )
A.-1B.0C.-1或0D.1或0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的虚轴长为2,离心率为$\frac{{\sqrt{5}}}{2}$,F1,F2为双曲线的两个焦点.
(1)求双曲线的方程;
(2)若双曲线上有一点P,满足∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\root{4}{{{{(-2)}^4}}}$的运算结果是(  )
A.2B.-2C.±2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,正三棱锥P-ABC的底面边长为a,高PO为h,求它的侧棱PA和斜高PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设三个数$\sqrt{{{({x-1})}^2}+{y^2}}$,2,$\sqrt{{{({x+1})}^2}+{y^2}}$成等差数列,其中(x,y)对应点的曲线方程是C.
(1)求C的标准方程;
(2)直线l1:x-y+m=0与曲线C相交于不同两点M,N,且满足∠MON为钝角,其中O为直角坐标原点,求出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P是椭圆$\frac{{x}^{2}}{4}$+y2=1上的任意一点,A(4,0),若M为线段PA中点,则点M的轨迹方程是(  )
A.(x-2)2+4y2=1B.(x-4)2+4y2=1C.(x+2)2+4y2=1D.(x+4)2+4y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,∠C=90°,BC=8,AB=10,O为BC上一点,以O为圆心,OB为半径作半圆与BC边、AB边分别交于点D、E,连结DE.
(Ⅰ)若BD=6,求线段DE的长;
(Ⅱ)过点E作半圆O的切线,切线与AC相交于点F,证明:AF=EF.

查看答案和解析>>

同步练习册答案