精英家教网 > 高中数学 > 题目详情
8.(1)已知x=27,y=64,化简并计算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{(-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}})•(-\frac{5}{6}{x^{\frac{1}{3}}}{y^{\frac{1}{6}}})}}$;
(2)计算:2log32-log3$\frac{32}{9}+{log_3}8-{25^{{{log}_5}3}}$.

分析 (1)直接利用有理指数幂化简求解即可.
(2)利用对数运算法则化简求解即可.

解答 解:(1)已知x=27,y=64,
$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{(-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}})•(-\frac{5}{6}{x^{\frac{1}{3}}}{y^{\frac{1}{6}}})}}$=24${x}^{-\frac{2}{3}+1-\frac{1}{3}}•{y}^{\frac{1}{2}-\frac{1}{2}-\frac{1}{6}}$=24×${64}^{-\frac{1}{6}}$=12.
(2)2log32-log3$\frac{32}{9}+{log_3}8-{25^{{{log}_5}3}}$=2log32-5log32+2+3log32-9
=-7.

点评 本题考查对数运算法则的应用,有理指数幂的运算法则,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:
①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“?b∈R,?a∈D,f(a)=b”;
②函数f(x)∈B的充要条件是f(x)有最大值和最小值;
③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B
④若函数$f(x)=aln({x+2})+\frac{x}{{{x^2}+1}}({x>-2,a∈R})$有最大值,则f(x)∈B.其中的真命题为(  )
A.①③B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2为双曲线C:x2-$\frac{y^2}{3}$=1的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=${x^2}+\frac{9}{1+|x|}$是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.方程$\frac{{x}^{2}}{{25-m}$+$\frac{{y}^{2}}{{16+m}$=1表示焦点在y轴上的椭圆,则m的取值范围是($\frac{9}{2}$,25).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}的公比大于零,a1+a2=3,a3=4,数列{bn}是等差数列,${b_n}=\frac{{n({n+1})}}{n+c}$,c≠0是常数.
(1)求的值,数列{an}与{bn}的通项公式;
(2)设数列{cn}满足:当n为偶数时cn=an,当n为奇数时cn=bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{2b-c}{a}=\frac{cosC}{cosA}$
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,求b2+c2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点,若|AF|十|BF|=4,点M到直线l的距离不小于$\frac{4}{5}$,则椭圆E的离心率的取值范围是(0,$\frac{\sqrt{3}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=2+log2x(1≤x≤8),判断函数g(x)=f2(x)+f(2x)有无零点?若有零点,求出零点;若无零点,则说明理由.

查看答案和解析>>

同步练习册答案