【题目】设数列 的前 项和为 ,且 ,数列 为等差数列,且 .
(1)求 ;
(2)求数列 的前 项和 .
【答案】
(1)解:因为 ,所以当n=1时,得 =
当 时,因为 ,代入 得
所以 又 -1=- ,
即 为以- 为首项, 为公比的等比数列
所以
所以
(2)解:因为 ,所以 ,
因为数列 为等差数列,且
所以 ,即公差为1
所以
所以数列 的前 项和 ①
②
①-②得
【解析】(1)根据题意利用 S n 和 a n 关系可以推导出 { S n 1 }是等比数列,利用等比数列的通项公式即可求出 S n。(2)根据题意首先求出两个数列的通项公式,进而得到数列 { a n b n } 的通项公式,故可得出前 n 项和 T n 的表达式,再利用在等式两边同时乘以公比两式相减 即可得出Tn.
【考点精析】通过灵活运用等差数列的通项公式(及其变式)和等差数列的前n项和公式,掌握通项公式:或;前n项和公式:即可以解答此题.
科目:高中数学 来源: 题型:
【题目】某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上且以2为周期的偶函数,当0≤x≤1,f(x)=x2 . 如果函数g(x)=f(x)﹣(x+m)有两个零点,则实数m的值为( )
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 , ,设函数 .
(1)求函数 的单调递增区间;
(2)在 中,边 分别是角 的对边,角 为锐角,若
, , 的面积为 ,求边 的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,两个正方形 和 所在平面互相垂直,设 分别是 和 的中点,那么
① ; ② 平面 ;③ ;④ 异面,其中假命题的个数为( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的焦距为2 ,椭圆C上任意一点到椭圆两个焦点的距离之和为6. (Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx﹣2与椭圆C交于A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足a1= ,2Sn﹣SnSn﹣1=1(n≥2).
(1)求S1 , S2 , S3 , S4并猜想Sn的表达式(不必写出证明过程);
(2)设bn= ,n∈N*,求bn的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱锥V﹣ABC中,VA=VB=AC=BC=2,AB=2 ,VC=1,线段AB的中点为D.
(1)求证:平面VCD⊥平面ABC;
(2)求三棱锥V﹣ABC的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com