精英家教网 > 高中数学 > 题目详情

【题目】已知中心在坐标原点一个焦点为的椭圆被直线截得的弦的中点的横坐标为.

(1)求此椭圆的方程;

(2)设直线与椭圆交于两点,且以为对角线的菱形的一个顶点为面积的最大值及此时直线的方程.

【答案】(1)(2)最大值1

【解析】【试题分析】(1)依题意可知,得到,设出两点的坐标,利用点差法可得到的另一个关系式,由此求得的值.(2)联立直线的方程和椭圆的方程,消去写出韦达定理,利用菱形和椭圆的弦长公式,求得面积的表达式,在利用二次函数最值来求得面积的最大值.

【试题解析】

1)设所求椭圆方程为,由题意知

设直线与椭圆的两个交点为,弦的中点为

,两式相减得:

两边同除以,得,即.

因为椭圆被直线截得的弦的中点的横坐标为,所以

所以 ,所以,即

由①②可得

所以所求椭圆的方程为.

(2)设, 的中点为

联立,消可得:

此时,即

为对角线的菱形的一顶点为,由题意可知,即

整理可得:

由①②可得

到直线的距离为,则

的面积取最大值1,此时

∴直线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面为等腰梯形且底面与侧面垂直 分别为线段的中点 .

1证明: 平面

2与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人租用一块土地种植一种瓜类作物,租期5年,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg.当年产量低于450kg时,单位售价为12元/kg,当年产量不低于450kg时,单位售价为10元/kg.

(1)求图中a的值;
(2)以各区间中点值作为该区间的年产量,并以年产量落入该区间的频率作为年产量取该区间中点值的概率,求年销售额X(单位:元)的分布列;
(3)求在租期5年中,至少有2年的年销售额不低于5000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求焦点在轴,焦距为4,并且经过点的椭圆的标准方程;

(2)已知双曲线的渐近线方程为且与椭圆有公共焦点,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且点(4,2)在函数f(x)的图象上.

(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;

(2)求不等式f(x)<1的解集;

(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在锐角中,垂心关于边的对称点分别为,关于边的中点的对称点分别为.证明:

(1)六点共圆;

(2)

(3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的奇函数,当x0时,f(x)=x+1,那么不等式2f(x)﹣10的解集是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1与圆C2的极坐标方程及两圆交点的极坐标;
(2)求圆C1与圆C2的公共弦的参数方程.

查看答案和解析>>

同步练习册答案