分析 因为函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,则导数在区间(-∞,-1)和(3,+∞)上都大于零,在区间(-1,3)上小于零,可知,-1和3对应的导数值为0,再由f′(0)=-18,可求得导函数,再利用导函数与原函数间的关系,表示出原函数,再由f(0)=-7求解.
解答 解:f′(x)=3ax2+2bx+c.
由f'(0)=-18得c=-18,即f′(x)=3ax2+2bx-18,
又由于f(x)在区间(-∞,-1)和(3,+∞)上是增函数,
在区间(-1,3)上是减函数,
所以-1和3必是f′(x)=0的两个根.
从而$\left\{\begin{array}{l}{3a-2b-18=0}\\{27a+6b-18=0}\end{array}\right.$,
又根据f(0)=-7,
所以f(x)=2x3-6x2-18x-7.
点评 本题主要考查函数的单调性问题,当导数大于零时,函数为增函数,当导数小于零时,函数为减函数.
科目:高中数学 来源: 题型:选择题
A. | (-∞,1] | B. | [0,1] | C. | [0,+∞) | D. | (-∞,0]∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 最大值6 | B. | 最小值6 | C. | 最大值-6 | D. | 最小值-6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
A. | $\widehat{y}$=0.87x+0.32 | B. | $\widehat{y}$=3.42x-3.97 | C. | $\widehat{y}$═1.23x+0.08 | D. | $\widehat{y}$═2.17x+32.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com