【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 | 未参加书法社团 | |
参加演讲社团 | 8 | 5 |
未参加演讲社团 | 2 | 30 |
(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
【答案】(1);(2)
【解析】
试题分析:(1)本题考查概率问题中的古典概型,表格以统计的形式给出条件,实则考查概率,问题是从该班随机选1名同学,求该同学至少参加一个社团的概率,那么我们可以根据统计数据得知,未参加书法社团也未参加演讲社团的共有30人,那么至少参加一个社团的人数应为45-30=15人,设“至少参加一个社团”为事件A,所以可以根据古典概型概率公式求出至少参加一个社团的概率为;(2)问题是从5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,共包含15个基本事件,也可将基本事件空间列出,便于观察和求解,设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2,则可以根据古典概型概率公式求得。
试题解析:(Ⅰ)设“至少参加一个社团”为事件A;
从45名同学中任选一名有45种选法,∴基本事件数为45;
通过列表可知事件A的基本事件数为8+2+5=15;
这是一个古典概型,∴P(A)=;
(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;
∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;
设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;
这是一个古典概型,∴.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|﹣|x+3|,a∈R.
(1)当a=﹣1时,解不等式f(x)≤1;
(2)若当x∈[0,3]时,f(x)≤4,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1、F2是椭圆C的左右焦点,点A,B为其左右顶点,P为椭圆C上(异于A、B)的一动点,当P点坐标为(1, )时,△PF1F2的面积为 ,分别过点A、B、P作椭圆C的切线l1 , l2 , l,直线l与l1 , l2分别交于点R,T.
(1)求椭圆C的方程;
(2)(i)求证:以RT为直径的圆过定点,并求出定点M的坐标;
(ii)求△RTM的面积最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的管理者通过公司近年来科研费用支出x(百万元)与公司所获得利润y(百万元)的散点图发现,y与x之间具有线性相关关系,具体数据如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
科研费用x(百万元) | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
公司所获利润y(百万元) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)求y关于x的回归直线方程;
(2)若该公司的科研投入从2011年开始连续10年每一年都比上一年增加10万元,预测2017年该公司可获得的利润约为多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题;命题:函数在区间上为减函数.
(1)若命题为真命题,求实数的取值范围;
(2)若命题“或”为真命题,且“且”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是ρ= ,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A、B两点.
(Ⅰ)写出直线l的极坐标方程与曲线C的普通方程;
(Ⅱ)求线段MA、MB长度之积MAMB的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com