【题目】在等比数列中,已知,.设数列的前n项和为,且,(,).
(1)求数列的通项公式;
(2)证明:数列是等差数列;
(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.
【答案】(1)(2)见解析(3)存在唯一的等差数列,其通项公式为,满足题设
【解析】
(1)由,可得公比,即得;(2)由(1)和可得数列的递推公式,即可知结果为常数,即得证;(3)由(2)可得数列的通项公式,,设出等差数列,再根据不等关系来算出的首项和公差即可.
(1)设等比数列的公比为q,因为,,所以,解得.
所以数列的通项公式为:.
(2)由(1)得,当,时,可得①,
②
②①得,,
则有,即,,.
因为,由①得,,所以,
所以,.
所以数列是以为首项,1为公差的等差数列.
(3)由(2)得,所以,.
假设存在等差数列,其通项,
使得对任意,都有,
即对任意,都有.③
首先证明满足③的.若不然,,则,或.
(i)若,则当,时,,
这与矛盾.
(ii)若,则当,时,.
而,,所以.
故,这与矛盾.所以.
其次证明:当时,.
因为,所以在上单调递增,
所以,当时,.
所以当,时,.
再次证明.
(iii)若时,则当,,,,这与③矛盾.
(iv)若时,同(i)可得矛盾.所以.
当时,因为,,
所以对任意,都有.所以,.
综上,存在唯一的等差数列,其通项公式为,满足题设.
科目:高中数学 来源: 题型:
【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.
(1)当时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.
(1)求椭圆的标准方程;
(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(m为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于M,N两点.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系, 点的极坐标为,曲线的参数方程为(为参数).
(1)写出点的直角坐标及曲线的直角坐标方程;
(2)若为曲线上的动点,求的中点到直线: 的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com