精英家教网 > 高中数学 > 题目详情

【题目】在等比数列中,已知.设数列的前n项和为,且.

1)求数列的通项公式;

2)证明:数列是等差数列;

3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.

【答案】12)见解析(3)存在唯一的等差数列,其通项公式为满足题设

【解析】

1)由可得公比,即得;(2)由(1)和可得数列的递推公式,即可知结果为常数,即得证;(3)由(2)可得数列的通项公式,,设出等差数列,再根据不等关系来算出的首项和公差即可.

1)设等比数列的公比为q,因为,所以,解得.

所以数列的通项公式为:.

2)由(1)得,当时,可得①,

①得,

则有,即.

因为,由①得,,所以

所以.

所以数列是以为首项,1为公差的等差数列.

3)由(2)得,所以.

假设存在等差数列,其通项

使得对任意,都有

即对任意,都有.

首先证明满足③的.若不然,,则,或.

i)若,则当时,

这与矛盾.

ii)若,则当时,.

,所以.

,这与矛盾.所以.

其次证明:当时,.

因为,所以上单调递增,

所以,当时,.

所以当时,.

再次证明.

iii)若时,则当,这与③矛盾.

iv)若时,同(i)可得矛盾.所以.

时,因为

所以对任意,都有.所以.

综上,存在唯一的等差数列,其通项公式为满足题设.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求出函数的单调区间及最大值;

2)若,求函数上的最大值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量,满足,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为(

A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的长轴长为,点为椭圆上的三个点,为椭圆的右端点,过中心,且

1)求椭圆的标准方程;

2)设是椭圆上位于直线同侧的两个动点(异于),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为m为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于MN两点.

(1)求直线l的普通方程和曲线C的直角坐标方程;

(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是曲线的切线.

1)求函数的解析式,

2)若,证明:对于任意有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系, 点的极坐标为,曲线的参数方程为为参数).

(1)写出点的直角坐标及曲线的直角坐标方程;

(2)若为曲线上的动点,求的中点到直线 的距离的最小值.

查看答案和解析>>

同步练习册答案