精英家教网 > 高中数学 > 题目详情
19.求满足${(\frac{1}{4})^{x-1}}$>16的x的取值集合是(-∞,-1).

分析 把不等式两边化为同底数,然后利用指数函数的单调性转化为一元一次不等式求解.

解答 解:由${(\frac{1}{4})^{x-1}}$>16,得2-2x+2>24
∴-2x+2>4,得x<-1.
∴满足${(\frac{1}{4})^{x-1}}$>16的x的取值集合是(-∞,-1).
故答案为:(-∞,-1).

点评 本题考查指数不等式的解法,考查了指数函数的单调性,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则摸到同色球的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列命题
①y=$\frac{1}{x}$在定义域内为减函数;
②y=(x-1)2在(0,+∞)上是增函数;
③y=-$\frac{1}{x}$在(-∞,0)上为增函数;
④y=kx不是增函数就是减函数.
其中错误命题的个数有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆的方程为x2+y2-6x=0.则该圆的圆心和半径分别是(  )
A.(0,0),r=3B.(3,0),r=3C.(-3,0),r=3D.(3,0)r=9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=2{cos^2}x+2\sqrt{3}sinxcosx+\frac{1}{2},({x∈R})$,
(1)求函数f(x)的单调增区间;
(2)若$x∈[{0,\frac{π}{2}}]$,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在1000个有机会中奖的号码(编号为000~999)中,按照随机抽样的方法确定后两位数为88的号码为中奖号码,该抽样运用的抽样方法是(  )
A.随机数表法B.抽签法C.分层抽样D.系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A={x|x2-2x-3<0},B={x|ax2-x+b≥0},若A∩B=∅,A∪B=R,则a+b等于(  )
A.1B.-1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合M={x|x2+x-6=0},N={y|ay+2=0,a∈R},若满足M∩N=N的所有实数a形成集合为A,则A的子集有个8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.顶点在原点,焦点是(0,-2)的抛物线方程是(  )
A.x2=8yB.x2=-8yC.y2=8xD.y2=-8x

查看答案和解析>>

同步练习册答案