精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,焦距为.

(1)求的方程;

(2)若斜率为的直线与椭圆交于两点(点均在第一象限),为坐标原点.

①证明:直线的斜率依次成等比数列.

②若关于轴对称,证明:.

【答案】(1); (2)①见解析;②见解析.

【解析】

1)根据离心率、焦距和可解出,从而得到椭圆方程;(2)①设直线的方程为:,将直线方程与椭圆方程联立可得韦达定理的形式,从而求得;整理可知:,从而证得结论;②关于轴对称可知,由①知,则,利用两角和差正切公式展开整理,根据基本不等式求得最小值,经验证等号无法取得,从而证得结论.

(1)由题意可得:,解得:

椭圆的方程为:

(2)证明:①设直线的方程为:

消去得:

,且

即直线的斜率依次成等比数列

②由题可知:

由①可知:

,则两点重合,不符合题意;可知无法取得等号

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一个不透明的袋子,装有4个大小形状完全相同的小球,球上分别标有数字1234.现按如下两种方式随机取球两次,每种方式中第1次取到球的编号记为,第2次取到球的编号记为.

1)若逐个不放回地取球,求是奇数的概率;

2)若第1次取完球后将球再放回袋中,然后进行第2次取球,求直线与双曲线有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列是以2为首项,1为公差的等差数列,是以1为首项,2为公比的等比数列,则( )

A.1033B.1034C.2057D.2058

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

0.050

0.010

0.001

k

3.841

6.635

10.828

算得,.见附表:参照附表,得到的正确结论是(  )

A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

C. 有99%以上的把握认为“爱好该项运动与性别有关”

D. 有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是矩形,交于点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某中学学生对数学学习的情况,从该校抽了名学生,分析了这名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:

1)求频率分布直方图中的值;

2)根据频率分布直方图估计该组数据的中位数(精确到);

3)在这名学生的数学成绩中,从成绩在的学生中任选人,求次人的成绩都在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线的右焦点,左支上一点,),当周长最小时,则点的纵坐标为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的周期函数,周期,对都有,且当时,,若在区间内关于的方程恰有3个不同的实根,则的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业购买某种仪器,在仪器使用期间可能出现故障,需要请销售仪器的企业派工程师进行维修,因为考虑到人力、成本等多方面的原因,销售仪器的企业提供以下购买仪器维修服务的条件:在购买仪器时,可以直接购买仪器维修服务,维修一次1000元;在仪器使用期间,如果维修服务次数不够再次购买,则需要每次1500元..现需决策在购买仪器的同时购买几次仪器维修服务,为此搜集并整理了500台这种机器在使用期内需要维修的次数,得到如下表格:

维修次数

5

6

7

8

9

频数(台)

50

100

150

100

100

表示一台仪器使用期内维修的次数,表示一台仪器使用期内维修所需要的费用,表示购买仪器的同时购买的维修服务的次数.

(1)若,求的函数关系式;

(2)以这500台仪器使用期内维修次数的频率代替一台仪器维修次数发生的概率,求的概率.

(3)假设购买这500台仪器的同时每台都购买7次维修服务,或每台都购买8次维修服务,请分别计算这500台仪器在购买维修服务所需要费用的平均数,以此为决策依据,判断购买7次还是8次维修服务?

查看答案和解析>>

同步练习册答案