如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体。
(1)求证BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.
(1)详见解析, (2)
解析试题分析:(1)折叠问题,首先要明确折叠前后量的变化,尤其是垂直条件的变化,本题要证明线面垂直,首先找线线垂直,折叠前后都有条件,而折叠后直线变为两条相交直线,因此可由线面垂直判定定理得到BC⊥平面AFG ,(2)求二面角,有两个方法,一是作出二面角的平面角,二是利用空间向量计算;本题易建立空间直角坐标系,较易表示各点坐标,因此选择利用空间向量求二面角.下面的关键是求出两个平面的法向量,平面ADE的一个法向量易求,而平面ABE的一个法向量则需列方程组求解,最后利用数量积求夹角的余弦值
试题解析:(1) 在图甲中,由△ABC是等边三角形,E,D分别为AB,AC的三等分点,点G为BC边的中点,易知DE⊥AF,DE⊥GF,DE//BC. 2分
在图乙中,因为DE⊥AF,DE⊥GF,AFFG=F,所以DE⊥平面AFG.
又DE//BC,所以BC⊥平面AFG. 4分
(2) 因为平面AED⊥平面BCDE,平面AED平面BCDE=DE,DE⊥AF,DE⊥GF,所以FA,FD,FG两两垂直.
以点F为坐标原点,分别以FG,FD,FA所在的直线为轴,建立如图所示的空间直角坐标系.
则,,,所以,0). 6分
设平面ABE的一个法向量为.
则,即,
取,则,,则. 8分
显然为平面ADE的一个法向量,
所以. 10分
二面角为钝角,所以二面角的余弦值为. 12分
考点:线面垂直判定,空间向量求二面角
科目:高中数学 来源: 题型:解答题
如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP平面EFG;(2)当二面角G-EF-D的大小为时,求FG与平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.
(1)求异面直线AB1与DD1所成角的余弦值;
(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(1)证明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.
(Ⅰ)求异面直线EF与BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.
(1)求此正四棱锥的体积.
(2)求直线BM与侧面PAB所成角θ的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com