精英家教网 > 高中数学 > 题目详情
精英家教网如图,抛物线y=-x2+1与x轴的正半轴交于点A,将线段OA的n等分点从左至右依次记为P1,P2,…,Pn-1,过这些分点分别作x轴的垂线,与抛物线的交点依次为Q1,Q2,…,Qn-1,从而得到n-1个直角三角形△Q1OP1,△Q2P1P2,…,△Qn-1Pn-2Pn-1.当n→∞时,这些三角形的面积之和的极限为
 
分析:由题意知
lim
n→∞
(S1+S2+…+Sn-1)
=
lim
n→∞
1
2n
[(n-1)-
1222+…+(n-1)2
n2
]
,由此能够推导出这些三角形的面积之和的极限.
解答:解:p1(
1
n
,0)
p2(
2
n
,0)
,…,pn-1(
n-1
n
,0)
Q1(
1
n
,1-(
1
n
)
2
)
Q2(
2
n
,1-(
2
n
)
2
)
,…,Qn-1(
n-1
n
,1-(
n-1
n
)
2
)
,记△QnPn-1Pn的面积为Sn,则S1=
1
2
-
1
n
-[1-(
1
n
)
2
]
,S2=
1
2
-
1
n
-[1-(
1
n
)
2
]
,…,Sn-1=
1
2
-
1
n
-[1-(
n-1
n
)
2
]
lim
n→∞
(S1+S2+…+Sn-1)
=
lim
n→∞
1
2n
[(n-1)-
1222+…+(n-1)2
n2
]
=
1
2
-
lim
n→∞
(n-1)(n-2)(2n-3)
12n3
=
1
2
-
1
6
=
1
3

答案:
1
3
点评:本题考查极限的求法,解题时要注意观察分析能力和归纳总结能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,抛物线y=x2上有一点A(a,a2),a∈(0,1),过点A引抛物线的切线l分别交x轴与直线x=1于B,C两点,直线x=1交x轴于点D.
(1)求切线l的方程;
(2)求图中阴影部分的面积S(a),并求a为何值时,S(a)有最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.
(1)求抛物线的函数表达式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.
①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?
②是否存在这样的点P,使∠OQA为直角?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区一模)如图,抛物线y=-x2+9与x轴交于两点A,B,点C,D在抛物线上(点C在第一象限),CD∥AB.记|CD|=2x,梯形ABCD面积为S.
(Ⅰ)求面积S以x为自变量的函数式;
(Ⅱ)若
|CD||AB|
≤k
,其中k为常数,且0<k<1,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)写出A,B,C三点的坐标并求抛物线的解析式;
(2)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.

查看答案和解析>>

同步练习册答案