精英家教网 > 高中数学 > 题目详情
2.用反证法证明“如果a≤b,那么$\root{3}{a}≤\root{3}{b}$”,则假设的内容应是$\root{3}{a}>\root{3}{b}$..

分析 反证法是假设命题的结论不成立,即结论的反面成立,所以只要考虑 $\root{3}{a}≤\root{3}{b}$的反面是什么即可.

解答 解:∵$\root{3}{a}≤\root{3}{b}$的反面是$\root{3}{a}>\root{3}{b}$,
∴假设的内容应是$\root{3}{a}>\root{3}{b}$
故答案为$\root{3}{a}>\root{3}{b}$.

点评 本题主要考查了不等式证明中的反证法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.计算sin21°cos9°+sin69°sin9°的结果是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,AD∥BC,PA⊥AB,CD⊥AD,BC=CD=$\frac{1}{2}$AD,E为AD的中点.
(Ⅰ)求证:PA⊥CD;
(Ⅱ)求证:平面PBD⊥平面PAB;
(Ⅲ)在平面PAB内是否存在M,使得直线CM∥平面PBE,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(α)=$\frac{cos(\frac{π}{2}+α)•cos(π-α)}{sin(π+α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.复数(1+2i)i的虚部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)设l与圆C交于不同两点A,B,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(a+bi)(a-bi)(-a+bi)(-a-bi)等于(  )
A.(a2+b22B.(a2-b22C.a2+b2D.a2-b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知总体中各个体的值由小到大依次为2,3,3,7,a,b,12,15,18,20(a,b∈N*),且总体的中位数为10,若要使该总体的方差最小,则a,b的取值分别是(  )
A.9,11B.10,10C.8,10D.10,11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x∈N,则方程x2+x-2=0的解集用列举法可表示为{1}.

查看答案和解析>>

同步练习册答案