精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

已知各项均为正数的数列{an}前n项和为Sn,(p – 1)Sn = p2ann ∈N*p > 0且p≠1,数列{bn}满足bn = 2logpan

(Ⅰ)若p =,设数列的前n项和为Tn,求证:0 < Tn≤4;

(Ⅱ)是否存在自然数M,使得当n > M时,an > 1恒成立?若存在,求出相应的M;若不存在,请说明理由.

 

【答案】

(Ⅰ)解:由(p – 1)Sn = p2an (n∈N*)                 ①

       由(p – 1)Sn – 1 = p2an – 1                                 ②

       ① – ②得(n≥2)

       ∵an > 0 (n∈N*)

又(p – 1)S1 = p2a1,∴a1 = p

{an}是以p为首项,为公比的等比数列

an = p

bn = 2logpan = 2logpp2 – n

bn = 4 – 2n ………… 4分

   证明:由条件p =an = 2n – 2

       ∴Tn =                   ①

                      ②

① – ②得

= 4 – 2 ×[来源:Z|xx|k.Com]

= 4 – 2 ×

Tn =………… 8分

TnTn – 1 =

n > 2时,TnTn – 1< 0

所以,当n > 2时,0 < TnT3 = 3

T1 = T2 = 4,∴0 < Tn≤4.…………10分

   (Ⅱ)解:若要使an > 1恒成立,则需分p > 1和0 < p < 1两种情况讨论

       当p > 1时,2 – n > 0,n < 2

       当0 < p < 1时,2 – n < 0,n > 2

       ∴当0 < p < 1时,存在M = 2

       当n > M时,an > 1恒成立.………… 14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案