【题目】设集合, 是集合的所有子集组成的集合.若集合满足对任意的映射,总存在,使得成立,其中,表示集合的子集的补集,为给定的正整数.试求所有满足上述条件的集合.
【答案】见解析
【解析】
记.若存在有限子集,满足.
首先证明:存在映射,对任意的集合,均有.
设集合的全部子集构成的集合为,
其中,,,,.
定义映射,,,则对任意的,均有.
定义映射,对于任意的,设,.则.
定义
其中,.则对任意的,均有.
因此,对于映射,若不存在集合,使得,则.
其次证明:对任何有限集,,均满足题设条件.
反证法.
假设存在映射,使得对任意的,均有.
任取,由是有限集,故必存在整数,使得,且对任意的、,有.
设.则.
同理,,,……
.
由此知.
所以,,与不含不为1的奇数因子矛盾.
因此,不存在这样的映射,使得对任意的,均有,即对任一映射,均存在,有.
从而,必为所有元素个数小于或等于的实数的集合.
科目:高中数学 来源: 题型:
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
其中: , ,
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)
(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?
【答案】(1)答案见解析;(2) ;(3)中度高血压人群.
【解析】试题分析:(1)将数据对应描点,即得散点图,(2)先求均值,再代人公式求,利用求,(3)根据回归直线方程求自变量为180时对应函数值,再求与标准值的倍数,确定所属人群.
试题解析:(1)
(2)
∴
∴回归直线方程为.
(3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为(mmHg)∵
∴收缩压为180mmHg的70岁老人为中度高血压人群.
【题型】解答题
【结束】
19
【题目】如图,四棱柱的底面为菱形, , , 为中点.
(1)求证: 平面;
(2)若底面,且直线与平面所成线面角的正弦值为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是( )
A. B.
C. 是数列中的最大值 D. 数列无最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的右焦点为,点在椭圆上,过原点的直线与椭圆相交于、两点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,,过点且斜率不为零的直线与椭圆相交于、两点,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为直平行六面体.命题为正方体;命题的任意体对角线与其不相交的面对角线垂直.则命题是命题的( )条件 .
A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到直线的距离为.
(1)求抛物线的标准方程;
(2)设点是抛物线上的动点,若以点为圆心的圆在轴上截得的弦长均为4,求证:圆恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.
(Ⅰ)证明:平面 平面;
(Ⅱ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com