精英家教网 > 高中数学 > 题目详情
13.函数f(x)=$\frac{\sqrt{3-x}}{x+1}$+log3(x+2)的定义域是(-2,-1)∪(-1,3].

分析 根据对数函数的性质以及二次公式的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:$\left\{\begin{array}{l}{3-x≥0}\\{x+1≠0}\\{x+2>0}\end{array}\right.$,
解得:-2<x≤3且x≠-1,
故答案为:(-2,-1)∪(-1,3].

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+2x,则函数$g(x)=f(x)+\frac{1}{2}x-1$零点的集合为(  )
A.{1,-1,0}B.{-2,2,0}C.$\{2,-\frac{1}{2},\frac{{-5+\sqrt{41}}}{4}\}$D.$\{2,\frac{1}{2},\frac{{-5-\sqrt{41}}}{4}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不等式$\frac{1}{x-1}$<1的解集为p,关于x的不等式x2+(a-1)x-a>0的解集为q,若¬q是¬p的充分不必要条件,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数 f(x)=4x2-4ax+(a2-2a+2).
(1)若a=1,求f(x)在闭区间[0,2]上的值域;
(2)若f(x)在闭区间[0,2]上有最小值3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列两个对应中是集合A到集合B的映射的有(1)(3) 
(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则f:x→2x+1;
(2)设A={0,1,2},B={-1,0,1,2},对应法则f:x→y=2x-1
(3)设A=N*,B={0,1},对应法则f:x→x除以2所得的余数;
(4)A=B=R,对应法则f:x→y=±$\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设α和β为不重合的两个平面,给出下列命题:
(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
(2)若α外一条直线l与α内的一条直线平行,则l和α平行;
(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
(4)若l与α内的两条直线垂直,则直线l与α垂直.上面命题中,其中错误的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知偶函数f(x)满足f(x+2)=xf(x)x∈R,则f(3)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下面结论中,不正确的是(  )
A.若a>1,则函数y=ax与y=logax在定义域内均为增函数
B.函数y=3x与y=log3x图象关于直线y=x对称
C.$y={log_a}{x^2}$与y=2logax表示同一函数
D.若0<a<1,0<m<n<1,则一定有logam>logan>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求点A(-2,1)关于直线2x-y-15=0的对称点的坐标.

查看答案和解析>>

同步练习册答案