精英家教网 > 高中数学 > 题目详情
点P是曲线y=x2-lnx上任意一点,则点P到直线x-y-4=0的距离的最小值是______.
设P(x,y),则y′=2x-
1
x
(x>0)
令2x-
1
x
=1,则(x-1)(2x+1)=0,
∵x>0,∴x=1
∴y=1,即平行于直线y=x+2且与曲线y=x2-lnx相切的切点坐标为(1,1)
由点到直线的距离公式可得点P到直线x-y-4=0的距离的最小值d=
|1-1-4|
2
=2
2

故答案为:2
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R,若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x3-ax2-4x(a为常数),若函数f(x)在x=2处取得一个极值,
(1)求函数f(x)的单调区间;
(2)若经过点A(2,c),(c≠-8)可作曲线y=f(x)的三条切线,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,函数f(x)的图象是折线段ABC,其A,B,C的坐标分别为(0,4),(2,0),(6,4),则
lim
△x→0
f(1+△x)-f(1)
△x
=______.(用数字作答)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(ax2+bx+c)e2-x在x=1处取得极值,且在点(2,f(2))处的切线方程为6x+y-27=0.
(1)求a,b,c的值;
(2)求函数f(x)的单调区间,并指出f(x)在x=1处的极值是极大值还是极小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx+c在x=1处取得极值c-4.
(1)求a,b;
(2)设函数y=f(x)为R上的奇函数,求函数f(x)在区间(-2,0)上的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-2ax2+bx+c.
(Ⅰ)当c=0时,f(x)的图象在点(1,3)处的切线平行于直线y=x+2,求a,b的值;
(Ⅱ)当a=
3
2
,b=-9
时,f(x)在点A,B处有极值,O为坐标原点,若A,B,O三点共线,求c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数g(x)=(a-2)x(x>-1),函数f(x)=ln(1+x)+bx的图象如图所示.
(I)求b的值;
(II)求函数F(x)=f(x)-g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-
ln(-x)
x
,其中e是自然常数,a∈R.
(1)讨论a=-1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,|f(x)|>g(x)+
1
2

(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案