精英家教网 > 高中数学 > 题目详情

【题目】已知正方形的边长为1,如图所示:

1在正方形内任取一点求事件的概率;

2用芝麻颗粒将正方形均匀铺满,经清点,发现芝麻一共56粒,有44粒落在扇形请据此估计圆周率的近似值精确到0.001

【答案】12

【解析】

试题分析:1根据题意画出满足条件的点的图形,即可利用几何概型求解相应的概率;2由题意,可得正方形内的粒芝麻颗粒中有粒落在扇形,利用古典概型的概率公式,即可估算结论.

试题解析:1如图,在边长为1的正方形内任取一点满足条件的点落在扇形图中阴影部分,由几何概型概率计算公式,有:

故事件发生的概率为

2正方形内的56粒芝麻颗粒中有44粒落在扇形,频率为

用频率估计概率,由1

的近似值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在 对应的小矩形的面积分别是,且.

(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;

(2)计算在五一活动中消费超过3000元的消费者的平均年龄;

(3)若按照分层抽样,从年龄在 的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司过去五个月的广告费支出与销售额单位:万元之间有下列对应数据:

2

4

5

6

8

40

60

50

70

工作人员不慎将表格中的第一个数据丢失.已知呈线性相关关系且回归方程为则下列说法销售额与广告费支出正相关丢失的数据表中为30;该公司广告费支出每增加1万元,销售额一定增加万元若该公司下月广告投入8万元,则销售

额为70万元.其中,正确说法有

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设的单调区间

(2)若处取得极大值求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率,圆与直线相切,为坐标原点

1求椭圆的方程;

2过点任作一直线交椭圆两点,记,若在线段上取一点,使得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人练习罚球,每人练习6组,每组罚球20个,命中个数的茎叶图如下:

1求甲命中个数的中位数和乙命中个数的众数;

2通过计算,比较甲乙两人的罚球水平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线).

1求直线经过的定点坐标;

2若直线负半轴于,交轴正半轴于为坐标系原点,的面积为,求的最小值并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市经营一批产品,在市场销售中发现此产品在30天内的日销售量P(件)与日期)之间满足,已知第5日的销售量为55件,第10日的销售量为50件。

(1)求第20日的销售量; (2)若销售单价Q(元/件)与的关系式为,求日销售额的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1求函数的单调区间;

2函数在定义域内存在零点,求的取值范围

3,当时,不等式恒成立,求的取值范围

查看答案和解析>>

同步练习册答案