精英家教网 > 高中数学 > 题目详情
13.已知非零实数a,b满足a<b,则下列不等式中一定成立的是(  )
A.a+b>0B.$\frac{1}{a}>\frac{1}{b}$C.ab<b2D.a3-b3<0

分析 根据不等式的性质求解即可.

解答 解:对于A:∵a<b,则a-b<0,b-a>0,∴A不对.
对于B:∵a<b,当a<0<b,则$\frac{1}{a}<\frac{1}{b}$,∴B不对.
对于C:∵a<b,当a<b<0,则ab>b2,∴C不对.
对于D:∵a<b,则a3<b3,即a3-b3<0,∴D对.
故选D.

点评 本题考查了不等式的基本性质的运用.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.我市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]
(Ⅰ)求直方图中x的值
(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若全市共有企业1300个,试估计全市有多少企业可以申请政策优惠.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{8}{3}$B.4$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{3}+\frac{y^2}{2}=1$上的动点P与其顶点$A(-\sqrt{3},0)$,$B(\sqrt{3},0)$不重合.
(Ⅰ)求证:直线PA与PB的斜率乘积为定值;
(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,动点P与两定点A(-2,0),B(2,0)连线的斜率乘积为$-\frac{1}{2}$,记点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若曲线C上的两点M,N满足OM∥PA,ON∥PB,求证:△OMN的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若命题:“$?{x_0}∈R,a{x^2}-ax-2>0$”为假命题,则a的取值范围是(  )
A.(-∞,-8]∪[0,+∞)B.(-8,0)C.(-∞,0]D.[-8,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,有正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=定值,这个定值就是△ABC的外接圆的直径.如图2所示,△DEF中,已知DE=DF,点M在直线EF上从左到右运动(点M不与E、F重合),对于M的每一个位置,记△DEM的外接圆面积与△DMF的外接圆面积的比值为λ,那么(  )
A.λ先变小再变大
B.仅当M为线段EF的中点时,λ取得最大值
C.λ先变大再变小
D.λ是一个定值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,且${S_n}={n^2}+n$,则a3=6.

查看答案和解析>>

同步练习册答案