(本小题满分12分)
如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小;
(I)
(II)连结AC、BD交于G,连结FG,
∵ABCD为正方形,∴BD⊥AC,∵BF⊥平面ACE,∴FG⊥AC,∠FGB为二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB,又AE=EB,AB=2,AE=BE=,
在直角三角形BCE中,CE=
在正方形中,BG=,在直角三角形BFG中,
∴二面角B-AC-E为
(III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACB的距离等于B到平面ACE的距离,BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为
另法:过点E作交AB于点O. OE=1.
∵二面角D—AB—E为直二面角,∴EO⊥平面ABCD.
设D到平面ACE的距离为h,
平面BCE,
∴点D到平面ACE的距离为
解法二:
(Ⅰ)同解法一.
(Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,过O点平行于AD的直线为z轴,建立空间直角坐标系O—xyz,如图.
面BCE,BE面BCE, ,
在的中点,
设平面AEC的一个法向量为,
则
解得
令得是平面AEC的一个法向量.
又平面BAC的一个法向量为,
∴二面角B—AC—E的大小为
(III)∵AD//z轴,AD=2,∴,
∴点D到平面ACE的距离
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com