精英家教网 > 高中数学 > 题目详情
12.已知定义在R上的函数f(x)=2|x-m|-1 (m∈R)为偶函数,则不等式f(x)<1的解集为(-1,1).

分析 根据函数是偶函数,求出m的值,然后解不等式进行求解.

解答 解:∵函数f(x)=2|x-m|-1 (m∈R)为偶函数,
∴f(-x)=f(x),
即2|-x-m|-1=2|x-m|-1,
即2|-x-m|=2|x-m|
则|-x-m|=|x-m|,
即|x+m|=|x-m|,
解得m=0,
则f(x)=2|x|-1,
由f(x)<1得2|x|-1<1得2|x|<2,
即|x|<1,
解得-1<x<1,
即不等式的解集为(-1,1),
故答案为:(-1,1).

点评 本题主要考查不等式的求解,根据函数奇偶性的定义和性质求出m是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是π.
(1)求ω的值;
(2)当x∈[0,$\frac{5π}{12}$]时,求函数f(x)的最大值和最小值,及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b∈R+,则(a+$\frac{1}{a}$)•(b+$\frac{1}{b}$)的最小值是(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设x∈R,向量$\overrightarrow a$=(3,2),$\overrightarrow b$=(x,4),且$\overrightarrow a∥\overrightarrow b$,则x=(  )
A.-6B.6C.$-\frac{8}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列不等式中正确的是(  )
A.sin$\frac{5}{7}$π>sin$\frac{4}{7}$πB.tan$\frac{15}{8}$π>tan(-$\frac{π}{7}$)C.sin(-$\frac{π}{5}$)>sin(-$\frac{π}{6}$)D.cos(-$\frac{3}{5}$π)>cos(-$\frac{9}{4}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知p:函数f(x)=$\frac{x-2}{{e}^{x}}$在(m,2m)上是单调函数;q:“x2-3x≤0”是“x2-2mx-3m2≤0”的充分不必要条件,若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:函数y=2sin(x+$\frac{π}{2}}$)是奇函数;命题q:函数y=cosx的图象关于直线x=$\frac{π}{2}$对称.则下列判断正确的是(  )
A.p为真B.?q为假C.p∧q为假D.p∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,C=$\frac{π}{3}$.
(Ⅰ)若2sinB+2sin(A-C)=$\sqrt{3}$,求角A的大小;
(Ⅱ)若△ABC的面积为2$\sqrt{3}$,c=2$\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的首项al=1,an+1=$\frac{4{a}_{n}}{{a}_{n}+2}$(n∈N*).
(I)证明:数列{$\frac{1}{{a}_{n}}$-$\frac{1}{2}$}是等比数列;
(Ⅱ)设bn=$\frac{n}{{a}_{n}}$,求数列{bn}的前n项和Sn.

查看答案和解析>>

同步练习册答案