【题目】已知函数.(是自然对数的底数,)
(1)讨论的单调性,并证明有且仅有两个零点;
(2)设是的一个零点,证明曲线在点处的切线也是曲线的切线.
【答案】(1)单调递增,证明见解析;(2)证明见解析.
【解析】
(1)求出函数的定义域为,利用导数得出函数在和上均为增函数,并利用零点存在定理得出函数在上有一个零点,得出,再证明出也满足方程,从而得出函数有两个零点;
(2)由题意得出,利用这个关系式得出函数在点处的切线斜率为,从而证明出题中结论.
(1)函数的定义域为,,
所以,函数在、上单调递增.
又,.
所以,函数在区间有唯一零点,即,即.
又,,
因此,函数在区间有唯一零点.
综上所述,有且仅有两个零点;
(2)因为 ,所以点在曲线上.
由题设,即.
所以直线的斜率
因为曲线在点处切线的斜率是,
曲线在点处切线的斜率也是,
因此,曲线在点处的切线也是曲线的切线.
科目:高中数学 来源: 题型:
【题目】已知函数,,
(1)若函数f(x)有两个零点,求实数a的取值范围;
(2)若a=3,且对任意的x1∈[-1,2],总存在,使g(x1)-f(x2)=0成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第二届中国国际进口博览会11月初在上海举行了,在这届进口博览会上,某高校派出的4人承担了连续5天的志愿者服务,若每天只安排一人且每人至少参加一天志愿服务,则甲参加2天志愿服务的概率为________(结果用数值表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一项是,接下来的两项是,再接下来的三项是,……,以此类推,求满足如下条件的最小整数且该数列的前项和为2的整数幂,那么该软件的激活码是________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数有下述四个结论:
①是偶函数;②在区间单调递减;
③在有个零点;④的最大值为.
其中所有正确结论的编号是( )
A.①②④B.②④C.①④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个函数在公共定义域上恒有,则称这两个函数是该区间上的“同步函数”.
(1)试判断与是否为公共定义域上的“同步函数”?
(2)已知函数与是公共区域上的“同步函数”,求实数的取值范围;
(3)已知与在上是“同步函数”,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左、右两个焦点分别为设,若为正三角形且周长为.
(1)求椭圆的标准方程;
(2)若过点且斜率为的直线与椭圆相交于不同的两点,是否存在实数使成立,若存在,求出的值,若不存在,请说明理由;
(3)若过点的直线与椭圆相交于不同的两点两点,记的面积记为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列与满足.
(1)若,求数列的通项公式;
(2)若且数列为公比不为1的等比数列,求q的值,使数列也是等比数列;
(3)若且,数列有最大值M与最小值,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列.
(Ⅰ)求椭圆C的方程.
(Ⅱ)试探究是否为定值?若是,求出这个值;否 则求出它的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com