精英家教网 > 高中数学 > 题目详情
(2012•大连二模)已知实数z、y满足不等式组
x-2y+3≥0
3x+2y-7≤0
x+2y-1≥0
,则x-y的最小值为(  )
分析:先根据约束条件画出可行域,设z=x-y,再利用z的几何意义求最值,只需求出直线z=x-y过可行域内的点A时,z的最小值即可.
解答:解::先根据约束条件画出可行域,
设z=x-y,
将z最小值转化为y轴上的截距最大,
当直线z=x-y经过A(-1,1)时,z最小,
最小值为:-4,
即当x=-1,y=1时,x-y取得最小值-2.
故选B.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•大连二模)已知程序框图如图所示,则输出的s为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)已知全集U=Z,集合A={x∈U|
3
x+1
≤1),则?uA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)复数z满足z•i=1+i(i是虚数单位),则|z|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)若sinα+cosα=
1-
3
2
,α∈(0,π),则tanα
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)x,y的取值如表,从散点图分析,y与x线性相关,且回归方程为
y
=3.5x-1.3
,则m=(  )
x 1 2 3 4 5
y 2 7 8 12 m

查看答案和解析>>

同步练习册答案