精英家教网 > 高中数学 > 题目详情

【题目】已知函数的导函数的两个零点为

1)求的单调区间;

2)若的极小值为,求在区间上的最大值.

【答案】1)单调递增区间是,单调递减区间是;(2)最大值是

【解析】

1)求得,由题意可知是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;

2)由(1)中的结论知,函数的极小值为,进而得出,解出的值,然后利用导数可求得函数在区间上的最大值.

1

因为,所以的零点就是的零点,且符号相同.

又因为,所以当时,,即;当时,,即.

所以,函数的单调递增区间是,单调递减区间是

2)由(1)知,的极小值点,

所以有,解得

所以

因为函数的单调递增区间是,单调递减区间是.

所以为函数的极大值,

在区间上的最大值取中的最大者,

,所以函数在区间上的最大值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:若数列满足所有的项均由构成且其中个,,则称﹣数列

1﹣数列中的任意三项,则使得的取法有多少种?

2﹣数列中的任意三项,则存在多少正整数对使得的概率为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四楼锥中,.

1)求的长.

2)求直线与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,高尔顿板是英国生物统计学家高尔顿设计的用来研究随机现象的模型,它是在一块竖起的木板上钉上一排排互相平行,水平间隔相等的圆柱形铁钉,并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央,从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两钉的间隙,又碰到下一排铁钉,如此继续下去,在最底层的5个出口处各放置一个容器接住小球,那么,小球落入1号容器的概率是______,若取4个小球进行试验,设其中落入4号容器的小球个数为x,则x的数学期望是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是自然对数的底数.

(Ⅰ)若上存在两个极值点,求的取值范围;

(Ⅱ)若,函数与函数的图象交于,且线段的中点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,在新高考改革中,打破文理分科的“”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分,假定省规定:选考科目按考生成绩从高到低排列,按照占总体分别赋分分、分、分、分,为了让学生们体验赋分制计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单料全班排名),知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如图所示,小明同学在这次考试中物理分,化学多分.

(1)采用赋分制后,求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:函数上单调递增;命题:函数上单调递减.

(Ⅰ)若是真命题,求实数的取值范围;

(Ⅱ)若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,且,求证:.

查看答案和解析>>

同步练习册答案