精英家教网 > 高中数学 > 题目详情
先后2次抛掷一枚骰子,将得到的点数分别记为a,b.将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
分析:分类讨论求得这三条线段能围成等腰三角形的共有14种,而所有的情况共有6×6=36种,由此可得这三条线段能围成等腰三角形的概率.
解答:解:当a=b时,它们可以都等于3、4、5、6,共计4种;  当a=5时,b=1,2,3,4,6,共计5种;
b=5时,a=1,2,3,4,6,共计5种.
综上可得,这三条线段能围成等腰三角形的共有4+5+5=14种.
而所有的情况共有6×6=36种,
∴这三条线段能围成等腰三角形的概率 为p=
14
36
=
7
18
点评:本题考查古典概型及其概率计算公式的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(Ⅰ)设函数f(x)=|x-a|,函数g(x)=x-b,令F(x)=f(x)-g(x),求函数F(x)有且只有一个零点的概率;
(Ⅱ)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源:2014届福建省漳州市高二上学期期末考试理科数学卷(解析版) 题型:解答题

先后2次抛掷一枚骰子,将得到的点数分别记为a, b.

(1)求直线ax+by+5=0与圆 相切的概率;

(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.

 

查看答案和解析>>

科目:高中数学 来源:2010届高三数学每周精析精练:概率 题型:解答题

 先后2次抛掷一枚骰子,将得到的点数分别记为a,b.

  (1)求直线ax+by+5=0与圆x2+y2=1相切的概率;

  (2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

 

 

 

 

 

查看答案和解析>>

同步练习册答案